Citation: | ZHANG Kunjie. Research Progress and Trends of High Operating Temperature Infrared Detectors[J]. Infrared Technology , 2021, 43(8): 766-772. |
[1] |
Lior Shkedy, Maya Brumer, Philip Klipstein, et al. Development of 10 μm pitch XBn detector for low SWaP MWIR applications[C]//Proc. of SPIE, Infrared Technology and Applications XLⅡ, 2016, 9819: 98191D(doi: 10.1117/12.2220395).
|
[2] |
Lutz H, Breiter R, Eich D, et al. High operating temperature IR-modules with small pitch for SWaP reduction and high performance applications[C]//Proc. of SPIE, Electro-Optical and Infrared Systems: Technology and Applications Ⅷ, 2011, 8185: 818504(doi: 10.1117/12.900347).
|
[3] |
Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]//Proc. of SPIE, Infrared Technology and Applications XL, 2014, 9070: 90701D(doi: 10.1117/12.2050427).
|
[4] |
Rogalski A, Martyniuk P. Mid-Wavelength infrared nBn for HOT detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2963-2969. DOI: 10.1007/s11664-014-3161-y
|
[5] |
Philip Klipstein, Olga Klin, Steve Grossman, et al. "XBn" barrier detector for high operating temperatures[C]//Proc. of SPIE, Quantum Sensing and Nanophotonic Devices Ⅶ, 2010, 7608: 1-10.
|
[6] |
Philip Klipstein, Olga Klin, Steve Grossman, et al. High operating temperature XBn-InAsSb bariode detectors[C]//Proc. of SPIE, Quantum Sensing and Nanophotonic Devices IX, 2012, 8268: 1-8.
|
[7] |
Philip Klipstein. "XBn" Barrier photodetectors for high sensitivity and high operating temperature infrared sensors[C]//Proc. of SPIE, Infrared Technology and Applications XXXIV, 2008, 6940: 1-12.
|
[8] |
Philip Klipstein, Olga Klin, Steve Grossman, et al. MWIR InAsSb XBn detectors for high operating temperatures[C]//Proc. of SPIE, Infrared Technology and Applications XXXVI, 2010, 7660: 76602Y(doi: 10.1117/12.849503).
|
[9] |
David Z Ting, Alexander Soibel, Cory J Hill, et al. High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD)[C]//Proc. of SPIE, Infrared Technology and Applications XXXⅧ, 2012, 8353: 835332 (doi: 10.1117/12.920685).
|
[10] |
David Z Ting, Alexander Soibel, Arezou Khoshakhlagh, et al. Carrier transport in nBn infrared detectors[C]// Proc. of SPIE, Infrared Remote Sensing and Instrumentation XXIV, 2016, 9973: 997304 (doi: 10.1117/12.2238853).
|
[11] |
Kopytko M, Jóźwikowski K, Martyniuk P, et al. Status of HgCdTe barrier infrared detectors grown by MOCVD in military university of technology[J]. Journal of Electronic Materials, 2016, 45(9): 4563-4573. DOI: 10.1007/s11664-016-4702-3
|
[12] |
Philip Klipstein, Olga Klin, Steve Grossman, et al. MWIR InAsSb XBnn detector (bariode) arrays operating at 150 K[C]//Proc. of SPIE, Infrared Technology and Applications XXXⅦ, 2011, 8012: 80122R(doi: 10.1117/12.883238).
|
[13] |
邓功荣, 赵鹏, 袁俊, 等. 锑基高工作温度红外探测器研究进展[J]. 红外技术, 2017, 39(9): 780-784. http://hwjs.nvir.cn/article/id/hwjs201709002
DENG Gongrong, ZHAO Peng, YUAN Jun, et al. Status of Sb-based HOT infrared detectors[J]. Infrared Technology, 2017, 39(9): 780-784. http://hwjs.nvir.cn/article/id/hwjs201709002
|
[14] |
Philip Klipstein, Gross Y, Aronov D, et al. Low SWaP MWIR detector based on XBn Focal plane array Proc. of SP. IE[C]//Infrared Technology and Applications XXXIX, 2013, 87041: 1-12.
|
[15] |
Philip Klipstein, Olga Klin, Steve Grossman, et al. XBn barrier photodetectors based on InAsSb with high operating temperatures[C]//Optical Engineering, 2011, 50(6): doi: 10.1117/ 1.3572149.
|
[16] |
Amy W K, LIU Dmitri Lubyshev, QIU Yueming, et al. MBE growth of Sb-based bulk nBn infrared photodetector structures on 6-inch GaSb substrates[C]//Proc. of SPIE, Infrared Technology and Applications XLI, 2015, 9451: 94510T(doi: 10.1117/12.2178122).
|
[17] |
Dmitri Lubyshev, Joel M Fastenau, QIU Yueming, et al. MBE growth of Sb-based nBn photodetectors on large diameter GaAs substrates[C]// Proc. of SPIE, Infrared Technology and Applications XXXIX, 2013, 8704: 870412(doi: 10.1117/12.2019039).
|
[18] |
Yoram Karni, Eran Avnon, Michael Ben Ezra, et al. Large format 15μm pitch XBn detector[C]//Proc. of SPIE, Infrared Technology and Applications XL, 2014, 9070: 90701F(doi: 10.1117/12.2049691).
|
[19] |
Gershon G, Avnon E, Brumer M, et al. 10μm pitch family of InSb and XBn detectors for MWIR imaging[C]//Proc. of SPIE, Infrared Technology and Applications XLⅢ, 2017, 10177: 101771I(doi: 10.1117/12.2261703).
|
[20] |
DAT-CON Defence. Multi-sensor-units[M/OL]. [2019-03-06]. https://www.dat-con-defence.com/wp-content/uploads/2020/01/Multi-sensor-units_2020_compressed.pdf.
|
[21] |
Müller R, Gramich V, Wauro M, et al. High operating temperature InAs/GaSb type-Ⅱ superlattice detectors on GaAs substrate for the long wavelength infrared[J]. Infrared Physics and Technology, 2019, 96: 141-144. DOI: 10.1016/j.infrared.2018.10.019
|
[22] |
Philip Klipstein, Avnon E, Benny Y, et al. InAs/GaSb Type Ⅱ superlattice barrier devices with a low dark current and a high-quantum efficiency[C]//Proc. of SPIE, Infrared Technology and Applications XL, 2014, 9070: 90700U(doi: 10.1117/12.2049825).
|
[23] |
Martyniuk P, Hackiewicz K, Rutkowski J, et al. Ultimate performance of IB CID T2SLs InAs/GaSb and InAs/InAsSb longwave photodetectors for high operating temperature condition[J]. Journal of Electronic Materials, 2019, 48(10): 6093-6098. DOI: 10.1007/s11664-019-07398-x
|
[24] |
Manijeh Razeghi. Sb-based 3rd generation imagers at center for quantum devices[C]//Proc. SPIE, Infrared Technology and Applications XLVI, 2020: doi: 10.1117/12.2564813.
|
[25] |
周立庆, 宁提, 张敏, 等. 10 μm像元间距1024×1024中波红外探测器研制进展[J]. 激光与红外, 2019, 49(8): 915-920. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908002.htm
ZHOU Liqing, NING Ti, ZHANG Min, et al. Developments of 10 μm pixel pitch 1024×1024 MW infrared detectors[J]. Laser and Infrared, 2019, 49(8): 915-920. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908002.htm
|
[26] |
张坤杰. 国外三代红外探测器制冷机的研究现状[J]. 云光技术, 2020, 52(1): 28-37.
ZHANG Kunjie. The research status of the third generation infrared detectors in foreign countries[J]. YUN GUANG JI SHU, 2020, 52(1): 28-37.
|
[27] |
Lynred. DAPHNIS-HD MW[M/OL][2019-11-20]. http://www.lynred.com/sites/default/files/2019-10/Daphnis-HD-MW-datasheet.pdf.
|
[28] |
AIM Infrarot-Module GmbH. HiPIR-1280M-MCT MWIR 1280×1024 15 μm Pitch IDCA[M/OL][2019-03-09]. http://www.aim-ir.com/fileadmin/files/Data_Sheets_Security/Modules/02_MWIR_IDCA/HiPIR1280M/2018_AIM_datenblatt_A4_HiPIR-1280M_engl.pdf.
|
[29] |
AIM Infrarot-Module GmbH. HiPIR-Engine HOT MCT 1024×768 10μm PITCH IR ENGINE[M/OL][2019-03-09]. http://www.Aim-ir.com/fileadmin/files/Data_Sheets_Security/Modules/01_HotCube/2018_AIM_datenblatt_A4_HOT-MCT-1024_engl.pdf.
|
[1] | WANG Bo, TANG Libin, ZHANG Yuping, DENG Gongrong, ZUO Wenbin, ZHAO Peng. Research Progress of Black Silicon Photoelectric Detection Materials and Devices[J]. Infrared Technology , 2022, 44(5): 437-452. |
[2] | YANG Qiming, GAO Sibo, WANG Can, DUAN Liangfei, QIAN Fuli, DUAN Qian, ZHANG Jie, WANG Guanghua, LU Chaoyu, DUAN Yu. Study on the Effects of Yb: Ag Alloy Cathode on the Photoelectric Performance of the Top Emitting White Organic Light-emitting Devices[J]. Infrared Technology , 2021, 43(12): 1207-1211. |
[3] | HAN Tianliang, TANG Libin, ZUO Wenbin, JI Rongbin, XIANG Jinzhong. Research Progress of Graphene Heterojunctions and Their Optoelectronic Devices[J]. Infrared Technology , 2021, 43(12): 1141-1157. |
[4] | LI Rujie, TANG Libin, ZHANG Yuping, ZHAO Qing. Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors[J]. Infrared Technology , 2020, 42(5): 405-419. |
[5] | YAO Guan-sheng, ZHANG Xiang-feng, DING Jia-xin, LV Yan-qiu. Research on the Photoelectric Characteristics of the Pt/CdS Schottky UV Detector[J]. Infrared Technology , 2014, (6): 443-445. |
[6] | LI Li, JIN Wei-qi, QIAO Xi-qing, GAO Shao-shu, WANG Xia. A Research on the Conversion of the Minimum Illumination in the Beyond Visual Range Photoelectric Imaging System[J]. Infrared Technology , 2010, 32(2): 84-87. DOI: 10.3969/j.issn.1001-8891.2010.02.006 |
[7] | ZHU Hua-zheng, FAN Da-peng, MA Dong-xi, ZHANG Wen-bo. The Effect of the Carrier Movement on the Photoelectric Imaging System Performance[J]. Infrared Technology , 2008, 30(10): 586-590. DOI: 10.3969/j.issn.1001-8891.2008.10.008 |
[8] | SUN Jun-yue, MA Dong-mei, HUO Yu-bo. The Focal Length Measurement of Thermal Imaging System by 4-bar Targets[J]. Infrared Technology , 2006, 28(4): 220-223. DOI: 10.3969/j.issn.1001-8891.2006.04.009 |
[9] | Analysis of Second-Generation Thermal Imaging System Based On 288 × 4 Focal Plane Detector[J]. Infrared Technology , 2004, 26(2): 1-5. DOI: 10.3969/j.issn.1001-8891.2004.02.001 |
[10] | The Modulate Chopper Used in the Pyroelectric Thermal Imaging System[J]. Infrared Technology , 2002, 24(5): 5-10. DOI: 10.3969/j.issn.1001-8891.2002.05.002 |
1. |
张靖,单长吉,周丽,李鑫,朱豪. 基于图像融合的高压隔离开关分合闸状态识别. 红外技术. 2024(05): 539-547 .
![]() | |
2. |
王林. 特征标记下的蓄热式连续加热炉炉管安全VR检测技术. 工业加热. 2024(07): 76-80 .
![]() | |
3. |
张强,陈串,付怀智. 起重机械金属结构振动与故障诊断思考. 中国设备工程. 2023(19): 155-157 .
![]() |