基于双判别器加权生成对抗网络的图像去模糊方法

Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network

  • 摘要: 原始生成对抗网络(generative adversarial network, GAN)在训练过程中容易产生梯度消失及模式崩溃的问题,去模糊效果不佳。由此本文提出双判别器加权生成对抗网络(dual discriminator weighted generative adversarial network, D2WGAN)的图像去模糊方法,在GAN的基础上增加了一个判别器网络,将正向和反向KL(Kullback-Leibler)散度组合成一个目标函数,引入加权的思想调整正向和反向KL散度的比例,利用两个散度的互补特性,在学习清晰图片过程中避免不良模式的形成。实验结果表明,与现有方法相比,本文方法能更真实地恢复图像细节部分,且在评价指标峰值信噪比和图像结构相似度上有更好的表现。

     

    Abstract: The original generative adversarial network (GAN) is susceptible to the problems of vanishing gradients and mode collapse during the training process, and its deblurring effectiveness is poor. This study proposes an image deblurring method using a dual-discriminator weighted GAN. To extend the original GAN, a discriminator network is added to combine the forward and reverse Kullback–Leibler (KL) divergences into an objective function, and weights are used to adjust the ratio of forward and reverse KL divergences to leverage the complementary characteristics of the two divergences to avoid the formation of undesirable patterns in the process of learning clear pictures. Theoretical analysis proves that when an optimal discriminator is given, the difference between the forward and reverse KL divergences between real and generated data can be minimized. Experimental results demonstrate that compared to the existing methods, the proposed method can restore the details of an image more realistically and provides better performance in terms of the evaluation indexes of peak signal-to-noise ratio and structural similarity.

     

/

返回文章
返回