Research on Temperature Compensation of Image Intensifier Based on Auto-gated Power Supply
-
摘要: 针对匹配自动门控电源的超二代像增强器高低温条件下亮度增益和最大输出亮度产生漂移的问题,分析了温度补偿原理,设计了温度补偿方案,通过实验确定了温度补偿系数,验证了该温度补偿方案的合理性。实验结果表明,低照条件(输入照度低于5×10-4 lx),通过将MCP电压降低14.7 V能够将低温(-45℃)亮度增益从121%降低到105%以内,通过将MCP电压增加16.5 V能够将高温(55℃)亮度增益从77%提高到99%以上;高照条件(输入照度高于5×10-4 lx),通过将阳极电流设定值降低14%能够将低温最大输出亮度从114%降低到104%以内,通过将阳极电流设定值增加12.6%能够将高温最大输出亮度从87%提高到91%以上。因此,采用本文所述温度补偿技术能够有效提高自动门控像增强器高低温条件下亮度增益和最大输出亮度的一致性。Abstract: The brightness gain and maximum output brightness of super gen Ⅱ auto-gated image intensifiers vary with temperature. Here, we analyzed the principles of temperature compensation and designed a temperature compensation scheme. The compensation coefficient was determined experimentally, and the rationality of the temperature-compensation scheme was verified using the data. The experimental results showed that the low temperature (-45℃) brightness gain can be reduced from 121% to 105% by reducing the MCP voltage by 14.7 V under low illumination conditions (input illumination is less than 5×10-4 lx), and the high temperature (55℃) brightness gain can be increased from 77% to 99% by increasing the MCP voltage by 16.5 V. Under high illumination conditions (input illumination of more than 5×10-4 lx), the maximum output brightness at low temperatures can be reduced from 114% to less than 104% by reducing the anode current setting value by 14%, and the maximum output brightness at high temperature can be increased from 87% to more than 91% by increasing the anode current setting value by 12.6%. Therefore, the temperature compensation technology described herein can effectively improve the consistency of the brightness gain and maximum output brightness of auto-gated image intensifiers under high- and low-temperature conditions.
-
-
表 1 自动门控电源高低温测试结果
Table 1 High and low temperature test results of auto-gated power supply
T/℃ J2202004 J2202009 J2202012 Vc/V Vmcp/V Va/kV Vc/V Vmcp/V Va/kV Vc/V Vmcp/V Va/kV -45 -221 939 6.34 -219 941 6.33 -219 943 6.30 25 -219 939 6.32 -219 941 6.31 -219 943 6.30 55 -217 936 6.29 -215 940 6.28 -215 941 6.27 表 2 像增强器温度补偿前测试结果
Table 2 Test results of image intensifier before temperature compensations
T/℃ 3031# 1059# 1018# G/(cd/m2/lx) Il/nA G/(cd/m2/lx) Il/nA G/(cd/m2/lx) Il/nA -45 15645 4.13 16432 4.02 16553 4.23 25 12800 3.65 13700 3.49 13800 3.74 55 9722 3.19 10600 3.01 10600 3.3 表 3 像增强器温度补偿前后对比
Table 3 Contrast of image intensifier before and after temperature compensations
T/℃ 3031# 1059# 1018# G/(cd/m2/lx) MOB/(cd/m2) G/(cd/m2/lx) MOB/(cd/m2) G/(cd/m2/lx) MOB/(cd/m2) Before After Before After Before After Before After Before After Before After 55 9722 12824 6.9 7.2 10600 13760 7.1 7.4 10600 13346 6.7 6.9 25 12800 12800 7.9 7.9 13700 13700 8.3 8.3 13800 13800 7.8 7.6 0 14298 13692 8.4 8.1 15558 14124 9.0 8.4 15054 14386 8.0 7.8 -25 15835 14223 8.4 8.2 16675 14638 9.5 8.5 16665 14888 8.3 7.8 -45 15645 14085 8.9 7.6 16432 14117 9.5 8.1 16553 14566 8.6 7.5 -
[1] 李晓峰, 赵恒, 张彦云, 等. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189 LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
[2] 邓广绪, 延波, 智强, 等. 微光像增强器自动门控电源技术研究[J]. 红外技术, 2012, 34(3): 155-158. DOI: 10.3969/j.issn.1001-8891.2012.03.006 DENG Guangxu, YAN Bo, ZHI Qiang, et al. Study on technology of auto-gating power source in image intensifier[J]. Infrared Technology, 2012, 34(3): 155-158. DOI: 10.3969/j.issn.1001-8891.2012.03.006
[3] 黄林涛, 赵宝升, 张小秋. 一种带新型自动门控电源的像增强器[J]. 激光与光电子学进展, 2005(4): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200504007.htm HUANG Lintao, ZHAO Baosheng, ZHANG Xiaoqiu. Auto-gated power supply for generation image intensifiers[J]. Laser & Optoelectronics Progress, 2005(4): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200504007.htm
[4] 李亚情, 周盛涛, 王光凡, 等. 普通高压电源超二代微光像增强器亮度增益温度特性研究[J]. 红外技术, 2022, 44(8): 804-810. http://hwjs.nvir.cn/article/id/ef8c97a9-4aac-43f1-a102-98f9b0bb4617 LI Yaqing, ZHOU Shengtao, WANG Guangfan, et al. Research on brightness gain temperature characteristics of super gen. Ⅱ low-light-level image intensifier using high-voltage DC power supply[J]. Infrared Technology, 2022, 44(8): 804-810. http://hwjs.nvir.cn/article/id/ef8c97a9-4aac-43f1-a102-98f9b0bb4617
[5] 杨壮, 唐钦, 李璀, 等. 某型混联微光像增强器增益漂移问题研究[J]. 兵工自动化, 2020, 39(11): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD202011005.htm YANG Zhuang, TANG Qing, LI Chui, et al. Research on gain drift of certain type hybrid image intensifier[J]. Ordnance Industry Automation, 2020, 39(11): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD202011005.htm
[6] 孙默涵, 钱芸生, 任莹楠, 等. 基于自动亮度控制模型的门控型微光像增强器荧光屏亮度研究[J]. 光子学报, 2022, 51(3): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203014.htm SUN Mohan, QIAN Yunsheng, REN Yingnan, et al. Brightness of the screen of gated low light level image intensifier based on automatic brightness control model[J]. Acta Photonica Sinica, 2022, 51(3): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203014.htm
[7] XU Shiyu, CHANG Le, LIU Beihong, et al. Characterization of image intensifier tubes in vary temperature environments[C]//Proc. Of SPIE, 2022, 12169: 3209-3213.
[8] 李晓峰, 杜木林, 徐传平, 等. 影响超二代像增强器最高增益的因数分析[J]. 光子学报, 2022, 51(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm LI Xiaofeng, DU Mulin, XU Chuanping, et al. Analysis on factors affecting the maximum gain of super second generation image intensifier[J]. Acta Photonica Sinica, 2022, 51(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm
[9] Michalski M, Castleberry R H, Balboni J A, et al. Usage and Temperature Compensation of Performance Parameters for Night Vision Device: US20200203136A1[P]. 2020.
-
期刊类型引用(1)
1. 邹前进,张恒伟,苗锡奎,李路遥,刘小虎,陈育斌,路亚旭. 远场激光干扰态势内场等效方法研究. 光学与光电技术. 2024(06): 103-107 . 百度学术
其他类型引用(0)