Progress in Research on Semiconductor Photocathodes
-
摘要: 半导体光电阴极具有量子效率高、暗电流小的优点,被广泛应用于光电倍增管、像增强器等各类真空光电探测和成像器件,促进了极弱光的超快探测和成像技术的发展。另外作为能够产生高品质电子束的真空电子源,用于加速器光注入器、电子显微镜等科学装置。本文首先介绍了目前常用半导体光电阴极的分类以及在真空光电探测成像、真空电子源领域的具体应用。然后对碱金属碲化物光电阴极、碱金属锑化物光电阴极、GaAs光电阴极三类典型半导体光电阴极的制备技术进行了总结,并介绍了微纳结构、低维材料、单晶外延等新技术在半导体光电阴极研制中的应用。最后对半导体光电阴极的技术发展进行了展望。Abstract: Semiconductor photocathodes with high quantum efficiency and low dark current are widely used in various vacuum photoelectric detection and imaging devices, such as photomultiplier tubes and image intensifiers, promoting the development of ultrafast detection and imaging technology for extremely weak light. Vacuum electron sources capable of producing high-quality electron beams are used in accelerator photoinjectors, electron microscopes, and other scientific equipment. First, this review introduces the classification of semiconductor photocathodes and their applications in the fields of vacuum photoelectric detection and imaging and vacuum electron sources. Then, preparation techniques for three types of typical semiconductor photocathodes, namely, alkali telluride, alkali antimonide, and GaAs photocathodes, are summarized. Subsequently, applications of new technologies, such as micro-nano structures, low-dimensional materials, and single-crystal epitaxy, in the development of semiconductor photocathodes are introduced. Finally, the technical development of the semiconductor photocathodes is discussed.
-
Keywords:
- photocathode /
- alkali telluride /
- alkali antimonide /
- GaAs
-
0. 引言
以制冷型红外焦平面探测器组件为核心的红外热像仪在军事、航天、工业和医学等领域都有着广泛的应用,而制冷型红外探测器组件因高灵敏度和高空间分辨率,在远距离红外目标探测、重要军事目标识别等应用中占有重要地位。随着研制技术的不断发展和运用的广泛深入,用户对红外探测器组件产品可靠性要求越来越严格,过去红外探测器组件可靠性随热像仪整机考核的做法已不适应现在的应用需求,探测器组件可靠性指标进行单独评价验证已成为产品定型、验收的必然。
目前,产品可靠性最终结果只能依靠可靠性试验确定[1]。从现行标准中选择推荐的可靠性试验方案是探测器组件产品进行单独可靠性评价时承制方和订购方均认可的通行做法。
在中波红外640×512(25 μm)HgCdTe探测器组件的研制中,选取了GJB 899A-2009《可靠性鉴定和验收试验》的方法对探测器组件进行单独的可靠性鉴定试验[2],为满足GJB 899A的选用条件,在研制过程中进行了一系列可靠性试验,作为产品可靠性水平评价的数据支撑。
1. 红外焦平面探测器组件可靠性预计
1.1 可靠性预计
作为可靠性基础研究技术,可靠性预计既是产品研发的初始,也是评估产品最终满足设计要求的基础,同时可靠性预计也是最具争论的一项评估方法。
对于制冷型红外焦平面探测器组件目前尚无成熟的评估模型,通过总结类型产品的各种试验数据和运用场景进行预计的准确性不断受到质疑,随着产品数据量增加、批量生产的稳定以及试验技术的发展,现在能够通过对探测器组件以及关键部件进行加速寿命试验,得到更高准确度、与可观测数据印证的试验数据对探测器组件可靠性水平进行预计和评价。
1.2 关键部件的可靠性试验数据
根据产品功能实现,制冷型红外焦平面探测器组件可以分解为芯片组(探测器芯片与读出电路芯片集成组合)、温度传感器、杜瓦和制冷机4个功能部件,均为可靠性关键部件。
在探测器研制过程中,根据关键部件的设计、工艺制造特点以及可靠性预计和分配情况,采用了不同的可靠性评价试验方法,目前对探测器组件的部件在工作阶段的主要失效模式和加速应力试验方法见表 1。
表 1 探测器组件4种功能部件的主要失效模式和加速应力试验方法Table 1. Main failure modes and accelerated stress test for four functional components of detector assemblyComponents name Failure mode Accelerated stress test method Chipset Pixel Degradation, interconnect failure High temperature accelerated test, cycle test of working temperature Refrigerator Wear failure of moving parts Continuous start-up test Dewar Material outgassing High temperature accelerated test Temperature sensor Breakdown, interconnect failure Cycle test of working temperature 对芯片组、制冷机、杜瓦、温度传感器试验样品分组分别开展高温加速寿命试验和持续工作试验。取各部件主要性能参数为试验测试参数定期监测。
制冷机持续开机工作试验,并采用实际的无故障开机工作时间评估其平均故障间隔时间(mean time to failure, MTTF)值。
高温加速试验样本,获得各组试验样本在试验应力下的时间-累计失效分布,计算该应力水平下的寿命值,然后基于Arrhenius模型获得其激活能参数,外推常温下的贮存寿命,并利用单边估计计算在一定置信水平下样品在常温下的失效率单边上限,计算公式为:
$$\lambda=\frac{\chi_{1-\alpha, 2 r+2}^2}{2 \cdot t \cdot \mathrm{SS} \cdot \mathrm{AF}}$$ (1) 式中:λ为样本的失效率;χ1-α, 2r+22为χ2分布的α分位数;α为单边置信水平,试验中取90%;r为失效样本数量;t为试验时间,h;ss为总样本数量;AF为试验样本在常温贮存条件下的加速系数。
对中波红外640×512(25 μm)探测器组件各关键部件进行的专项可靠性试验包括:
芯片组:分别通过实施高温贮存加速寿命试验(90℃条件贮存216 h)和连续工作试验(常温条件连续工作600 h)得到芯片组贮存寿命失效率为1.03×10-6/h,工作失效率4.52×10-6/h。
金属微杜瓦:进行了高温贮存加速寿命试验[3](贮存71℃条件贮存,以试验样品的热负载超过初始值25%为失效判定),试验于发生1只样本失效时结束,最终高温贮存时间13896 h,推算其常温贮存失效率为3.76×10-6/h。
斯特林制冷机:连续开机工作试验,任务剖面基于实验室条件(环境温度20℃,标准负载,制冷温度80 K),总的无故障连续开机工作时间6108 h,失效率为163.7×10-6/h。
温度传感器:试验样品以25℃(常规库存温度)存储,定期进行低温冲击(77 K),累计试验时间大于26280 h,无故障发生,失效率为4.87×10-6/h。
1.3 红外焦平面探测器可靠性预计值
探测器组件与关键组成部件之间的可靠性逻辑关系为串联可靠性模型。探测器组件的总体失效率为:
$$\lambda_{\mathrm{S}}=\sum\limits_{i=1}^4 \lambda_i$$ (2) 式中:λS为探测器组件的失效率;λi为探测器组件第i个单元的失效率。
目前,在探测器组件的研制过程中,由于资源和时间限制,对一个型号产品进行充分可靠性试验的条件是有限的,通常是根据关键部件的专项可靠性试验结果,及同类探测器组件的可靠性经验数据,并考虑到产品装配在热像仪整机中的内部环境比产品各关键部件环境更为苛刻,包括温度升高、振动量级放大等因素,对失效率给出综合判断。中波红外640×512(25 μm)探测器组件各关键部件的综合预计[4]结果见表 2。
表 2 探测器组件关键部件失效率预计结果Table 2. Predicted results of failure rate of key components of detector assemblyKey components name Test value of failure rate Comprehensive estimated value of failure rate Chip set 5.55×10-6/h 31.7×10-6/h Dewar 3.76×10-6/h 14.3×10-6/h Refrigerator 163.7×10-6/h 166.7×10-6/h Temperature sensor 4.87×10-6/h 8.7×10-6/h 探测器组件失效率取各关键部件的综合预计值进行计算:
$$\lambda_{\mathrm{S}}=221.4 \times 10^{-6} / \mathrm{h}$$ 平均故障间隔时间:
$$\mathrm{MTBF}_{\mathrm{S}}=\frac{1}{\lambda_{\mathrm{S}}}=4516.7 \mathrm{~h}$$ 2. 可靠性验证试验
2.1 统计方案的选用
对探测器组件进行的可靠性验证试验采用GJB 899A-2009规定的可靠性鉴定方法。
以项目指标要求的平均无故障工作时间(mean time between failure,MTBF)最低可接受值1500 h作为检验下限θ1,探测器组件的MTBF预计值4516 h为其检验上限值θ0,则鉴别比:
$$ d=θ_{0}/θ_{1}=4516/1500=3.01 $$ 试验方案选取GJB 899A-2009[2]中的标准定时截尾方案17,详见表 3。
表 3 标准定时截尾试验统计方案Table 3. Statistical scheme of standard timed censoring testScheme number User risk α Developer risk β Identification radio d Test time (Multiple) Number of rejected failures Number of received failure Total trial time T 17 20% 20% 3.0 4.3 ≥3 ≤2 6450 h 2.2 试验剖面
试验施加的综合应力采用产品实际使用时的应力条件。试验设备和装置可在施加温度应力及振动应力时分别同时施加电应力,试验剖面如图 1所示。
图 1 可靠性试验综合环境试验剖面注:振动应力:按GJB150.16A-2009图C.4和表D8[5],进行扫描。3个轴向各振动1次,每个轴向60 min,每个试验段12 min。振动过程中被试品开机工作。Figure 1. Reliability trial comprehensive environmental test profileNote: Vibration stress: scanning according to GJB 150.16A-2009 Figure C.4 and Table D8[5], Three axial vibration once, each axial 60 min, each test section 12 min. Vibration over in the process of the subject boot work.2.3 试验实施及结果
可靠性鉴定试验具体试验情况及结果如下:
① 受试产品数量8套;每周期试验时间为96 h;
② 第1周期前先进行16 h低温贮存,第5个周期前先进行16 h高温贮存,贮存时不施加电应力;
③ 在每个试验周期常温工作期间,在额定电压下施加1次振动应力;
④ 每产品完成试验周期:8周期后再进行6.25 h;
⑤ 总试验时间完成:6450 h;
⑥ 试验发生故障次数:0次。
3. 可靠性评估
3.1 点估计
对于零故障时MTBF的点估计计算,考虑探测器组件在实际使用中需要较高的可靠性,选择将试验时间作为探测器组件MTBF点估计值,假设如果试验继续,立即发生一个故障,即MTBF点估计值:
$$ \hat \theta = T = 6450\mathrm{~h} $$ 3.2 置信度
根据可靠性试验选取的标准定时截尾方案17,使用方风险β=20%,采用GJB 899A-2009推荐,置信度取为:
$$ C=(1-2β)×100\%=60\% $$ 单边置信限的置信度:
$$ C′=(1+C)/2=80\% $$ 3.3 置信区间
由于试验无失效情况,只确定MTBF置信下限。单边置信下限为:
$$\theta_{\mathrm{L}} \geq \frac{2 T}{\chi_{1-C^{\prime}, 2 r+2}^2}$$ (3) 式中:θL为MTBF置信下限;T为试验时间;C′为单边置信限的置信度;r为故障次数。
将试验时间6450 h、故障次数0次、单边置信限置信度80%代入公式(3),可得:
$$ {\theta _{\mathrm{L}}} \geqslant \frac{{2 \times 6450}}{{\chi _{0.2, 2}^2}} = 4007.6\, {\rm h} $$ 即探测器组件MTBF单边置信下限θL=4007.6 h,说明MTBF真值大于或等于4007.6 h的概率为80%。
4. 结论
根据以上对中波红外640×512(25 μm)探测器组件依据关键部件专项可靠性试验数据、可靠性试验、长期使用统计数据进行较精确的可靠性水平评价,并据此信息进行的以用户要求功能和使用条件为任务剖面的可靠性鉴定试验结果的分析,试验对制冷型红外探测器组件做出了较为客观、准确的评估,为探测器组件可靠性试验研究提供了一个有效可行的模式。
-
图 5 金属基底上碱金属碲化物光电阴极的制备:(a) 装置示意图[34];(b) 共沉积法的工作稳定性[32];(c) K-Cs-Te光电阴极的制备工艺[34];(d) K-Cs-Te光电阴极的工作稳定性[35]
Figure 5. Preparation of alkali telluride photocathode on metal substrate: (a) Schematic diagram of setup[34]; (b) Operation stability of co-deposition method[32]; (c) Preparation process of K-Cs-Te photocathode[34]; (d) Operation stability of K-Cs-Te photocathode[35]
-
[1] HERTZ H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung[J]. Annalen der Physik, 1887, 267: 983-1000. DOI: 10.1002/andp.18872670827
[2] EINSTEIN A. On a heuristic viewpoint concerning the production and transformation of light[J]. Annalen der Physik, 1905, 17: 132-148.
[3] SPICER W E. Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds[J]. Physical Review, 1958, 112(1): 114-122. DOI: 10.1103/PhysRev.112.114
[4] SOMMER A H. Photoemissive Materials: Preparation, Properties and Uses[M]. New York: John Wiley & Sons, 1968: 1-4.
[5] XIANG R, TEICHERT J. Photocathodes for high brightness photo injectors[J]. Physics Procedia, 2015, 77: 58-65. DOI: 10.1016/j.phpro.2015.11.010
[6] LORUSSO A. Overview and development of metallic photocathodes prepared by laser ablation[J]. Applied Physics A, 2013, 110: 869-875. DOI: 10.1007/s00339-012-7168-z
[7] SRINIVASAN-RAO T, FISCHER J, TSANG T. Photoemission studies on metals using picosecond ultraviolet laser pulses[J]. Journal of Applied Physics, 1991, 69(5): 3291-3296. DOI: 10.1063/1.348550
[8] XIE H. Overview of the semiconductor photocathode research in China[J]. Micromachines, 2021, 12(11): 1376. DOI: 10.3390/mi12111376
[9] 唐光华, 戴丽英, 钟伟俊, 等. 紫外光电阴极研究进展[J]. 真空电子技术, 2011(6): 5-11. DOI: 10.3969/j.issn.1002-8935.2011.06.002 TANG Guanghua, DAI Liying, ZHONG Weijun, et al. Development of ultraviolet photocathodes research[J]. Vacuum Electronics, 2011(6): 5-11. DOI: 10.3969/j.issn.1002-8935.2011.06.002
[10] CHANLEK N, HERBERT J D, JONES R M, et al. The degradation of quantum efficiency in negative electron affinity GaAs photocathodes under gas exposure[J]. Journal of Physics D: Applied Physics, 2014, 47(5): 055110. DOI: 10.1088/0022-3727/47/5/055110
[11] MARTINELLI R U, FISHER D G. The application of semiconductors with negative electron affinity surfaces to electron emission devices[J]. Proceedings of the IEEE, 1974, 62(10): 1339-1360. DOI: 10.1109/PROC.1974.9626
[12] Hamamatsu Photonics KK. High-speed gated I. I. unit selection guide [DB/OL]. http://www.hamamatsu.com.cn/UserFiles/DownFile/Related/GateII_TII0006E.pdf, 2014.
[13] REN Bin, GUO Hui, SHI Feng, et al. A theoretical and experimental evaluation of Ⅲ-nitride solar-blind UV photocathode[J]. Chinese Physics B, 2017, 26(8): 088504. DOI: 10.1088/1674-1056/26/8/088504
[14] 唐家业, 方盛江, 颜士飞, 等. 日盲紫外真空探测器件和组件技术研究[J]. 真空电子技术, 2022(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ202202006.htm TANG Jiaye, FANG Shengjiang, YAN Shifei, et al. Technique research on solar-blind ultraviolet vacuum detector and assembly[J]. Vacuum Electronics, 2022(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ202202006.htm
[15] SUYAMA M, NAKAMURA K. Recent progress of photocathodes for PMTs[C]//International Workshop on New Photon Detectors, 2010: PD09 (DOI: 10.22323/1.090.0013).
[16] 田进寿. 条纹及分幅相机技术发展概述[J]. 强激光与粒子束, 2020, 32: 112003. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202011003.htm TIAN Jinshou. Introduction to development of streak and framing cameras[J]. High Power Laser and Particle Beams, 2020, 32: 112003. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202011003.htm
[17] 程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
[18] CHRZANOWSKI K. Review of night vision technology[J]. Opto-Electronics Review, 2015, 21(2): 149-164.
[19] 田金生. 微光像传感器技术的最新进展[J]. 红外技术, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001 TIAN Jinsheng. New development of low light level imaging sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001
[20] TRIVENI R, DOWELL D H. An Engineering Guide to Photoinjectors[M]. North Charleston: Create Space Independent Publishing Platform, 2013.
[21] RUSSELL S J. Overview of high-brightness, high-average-current photoinjectors for FELs[J]. Nuclear Instruments and Methods in Physics Research Section A, 2003, 507: 304-309. DOI: 10.1016/S0168-9002(03)00934-3
[22] XIANG R, ARNOLD A, BUETTIG H, et al. Cs2Te normal conducting photocathodes in the superconducting rf gun[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13(4): 043501. DOI: 10.1103/PhysRevSTAB.13.043501
[23] KARKARE S, BOULET L, CULTRERA L, et al. Ultrabright and ultrafast Ⅲ-Ⅴ semiconductor photocathodes[J]. Physical Review Letters, 2014, 112(9): 097601. DOI: 10.1103/PhysRevLett.112.097601
[24] SINCLAIR C K, ADDERLEY P A, DUNHAM B M, et al. Development of a high average current polarized electron source with long cathode operational lifetime[J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10(2): 023501. DOI: 10.1103/PhysRevSTAB.10.023501
[25] CULTRERA L, MAXSON J, BAZAROV I, et al. Photocathode behavior during high current running in the Cornell energy recovery linac photoinjector[J]. Physical Review Special Topics-Accelerators and Beams, 2011, 14(12): 120101. DOI: 10.1103/PhysRevSTAB.14.120101
[26] MUSUMECI P, NAVARRO J G, ROSENZWEIG J B, et al. Advances in bright electron sources[J]. Nuclear Instruments and Methods in Physics Research Section A, 2018, 907: 209-220. DOI: 10.1016/j.nima.2018.03.019
[27] CHANG T H P, MANKOS M, LEE K Y, et al. Multiple electron-beam lithography[J]. Microelectronic Engineering, 2001, 57: 117-135.
[28] MACHUCA F, SUN Y, LIU Z, et al. Prospect for high brightness Ⅲ–nitride electron emitter[J]. Journal of Vacuum Science & Technology B, 2000, 18(6): 3042-3046.
[29] MORISHITA H, OHSHIMA T, KUWAHARA M, et al. Resolution improvement of low-voltage scanning electron microscope by bright and monochromatic electron gun using negative electron affinity photocathode[J]. Journal of Applied Physics, 2020, 127(16): 164902. DOI: 10.1063/5.0005714
[30] KUWAHARA M, TAKEDA Y, SAITOH K, et al. Development of spin-polarized transmission electron microscope[C]//Journal of Physics: Conference Series, 2011, 298: 012016.
[31] DI BONA A, SABARY F, VALERI S, et al. Auger and x-ray photoemission spectroscopy study on Cs2Te photocathodes[J]. Journal of Applied Physics, 1996, 80(5): 3024-3030. DOI: 10.1063/1.363161
[32] SUBERLUCQ G. Technological challenges for high brightness photo-injectors[C]//Proceedings of EPAC, 2004: 64-68.
[33] GAOWEI M, SINSHEIMER J, STROM D, et al. Codeposition of ultrasmooth and high quantum efficiency cesium telluride photocathodes[J]. Physical Review Accelerators and Beams, 2019, 22(7): 073401. DOI: 10.1103/PhysRevAccelBeams.22.073401
[34] BISERO D, VAN OERLE B M, ERNST G J, et al. High efficiency photoemission from Cs-K-Te[J]. Applied Physics Letters, 1997, 70(12): 1491-1493. DOI: 10.1063/1.118362
[35] VERSCHUUR J W J, VAN OERLE B M, ERNST G J, et al. Aspects of accelerator-based photoemission[J]. Nuclear Instruments and Methods in Physics Research Section B, 1998, 139: 541-545. DOI: 10.1016/S0168-583X(97)00953-1
[36] 李晓峰, 赵学峰, 褚祝军, 等. Rb2Te与Cs2Te日盲紫外阴极比较研究[J]. 真空科学与技术学报, 2014, 34(8): 808-813. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201408007.htm LI Xiaofeng, ZHAO Xuefeng, CHU Zhujun, et al. Comparison study of Rb2Te and Cs2Te solar blind ultraviolet cathodes[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(8): 808-813. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201408007.htm
[37] 李晓峰, 赵学峰, 冯辉, 等. 一种用于紫外像增强器的碲钾铯光电阴极: 中国: 201410107207.9 [P]. 2017. LI Xiaofeng, ZHAO Xuefeng, Feng Hui, et al. Tellurium potassium caesium photocathode used for ultraviolet image intensifier: China: 201410107207.9 [P]. 2017.
[38] 李晓峰, 赵学峰, 陈其钧, 等. K2Te(Cs)日盲紫外光电阴极研究[J]. 光子学报, 2014, 43(6): 0625003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201406026.htm LI Xiaofeng, ZHAO Xuefeng, CHEN Qijun, et al. Study on K2Te(Cs) solar blind ultraviolet cathode[J]. Acta Photonica Sinica, 2014, 43(6): 0625003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201406026.htm
[39] 李晓峰, 赵学峰, 张昆林, 等. Rb2Te(Cs)日盲紫外光电阴极研究[J]. 红外技术, 2013, 35(9): 581-586. http://hwjs.nvir.cn/article/id/hwjs201309011 LI Xiaofeng, ZHAO Xuefeng, ZHANG Kunlin, et al. Study on Rb2Te(Cs) solar blind ultraviolet cathode[J]. Infrared Technology, 2013, 35(9): 581-586. http://hwjs.nvir.cn/article/id/hwjs201309011
[40] DOWELL D H, BETHEL S Z, FRIDDELL K D. Results from the average power laser experiment photocathode injector test[J]. Nuclear Instruments and Methods in Physics Research Section A, 1995, 356: 167-176. DOI: 10.1016/0168-9002(94)01327-6
[41] 谢华木, 王尔东. 作为加速器电子源的高量子效率K2CsSb光阴极制备工艺研究[J]. 真空, 2017, 54(1): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201701016.htm XIE Huamu, WANG Erdong. Research on fabrication recipe of high quantum efficiency K2CsSb photocathode[J]. Vacuum, 2017, 54(1): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201701016.htm
[42] LI X D, JIANG Z G, GU Q, et al. Preliminary systematic study of the temperature effect on the K-Cs-Sb photocathode performance based on the K and Cs co-evaporation[J]. Chinese Physics Letters, 2020, 37(1): 012901. DOI: 10.1088/0256-307X/37/1/012901
[43] DING Z, GAOWEI M, SINSHEIMER J, et al. In-situ synchrotron x-ray characterization of K2CsSb photocathode grown by ternary co-evaporation[J]. Journal of Applied Physics, 2017, 121: 055305. DOI: 10.1063/1.4975113
[44] FENG J, KARKARE S, NASIATKA J, et al. Near atomically smooth alkali antimonide photocathode thin films[J]. Journal of Applied Physics, 2017, 121: 044904. DOI: 10.1063/1.4974363
[45] SUN J, JIN M, WANG X, et al. Enhanced photoemission capability of bialkali photocathodes for 20-inch photomultiplier tubes[J]. Nuclear Instruments and Methods in Physics Research Section A, 2020, 971: 164021. DOI: 10.1016/j.nima.2020.164021
[46] CULTRERA L, KARKARE S, LILLARD B, et al. Growth and characterization of rugged sodium potassium antimonide photocathodes for high brilliance photoinjector[J]. Applied Physics Letters, 2013, 103: 103504. DOI: 10.1063/1.4820132
[47] CULTRERA L, GULLIFORD C, BARTNIK A, et al. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light[J]. Applied Physics Letters, 2016, 108: 134105. DOI: 10.1063/1.4945091
[48] 李朝木, 李谷川, 贾文. 多碱光电阴极[J]. 真空与低温, 1992, 11(1): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW199201003.htm LI Chaomu, LI Guchuan, JIA Wen. Multialkali photocathode[J]. Vacuum and Cryogenics, 1992, 11(1): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW199201003.htm
[49] 曾桂林, 周立伟, 李晓峰. 多碱光阴极玻璃基底表面处理研究[J]. 激光与红外, 2005, 35(7): 508-511. DOI: 10.3969/j.issn.1001-5078.2005.07.015 ZENG Guilin, ZHOU Liwei, LI Xiaofeng. Research on surface treatment of multalkali photocathode glass substrate[J]. Lase & Infrared, 2005, 35(7): 508-511. DOI: 10.3969/j.issn.1001-5078.2005.07.015
[50] 李晓峰, 陆胜林, 杨文波, 等. Na2KSb膜层组份均匀性对多碱阴极灵敏度的影响研究[J]. 光子学报, 2012, 41(10): 1171-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201210007.htm LI Xaofeng, LU Shenglin, YANG Wenbo, et al. Component uniformity study on Na2KSb film of multi-alkali photocathode[J]. Acta Photonica Sinica, 2012, 41(10): 1171-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201210007.htm
[51] 赵恒, 常乐, 李廷涛, 等. 多碱光电阴极的Cs-O激活技术研究[J]. 红外技术, 2018, 40(7): 695-700. http://hwjs.nvir.cn/article/id/hwjs201807013 ZHAO Heng, CHANG Le, LI Tingtao, et al. Study on Cs-O activation technology of multi-alkali photocathode[J]. Infrared Technology, 2018, 40(7): 695-700. http://hwjs.nvir.cn/article/id/hwjs201807013
[52] 常本康. 多碱阴极的结构分析与研究[J]. 应用光学, 1984(4): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX198404001.htm CHANG Benkang. Study and analysis of structure on multialkali photocathode[J]. Journal of Applied Optics, 1984(4): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX198404001.htm
[53] 杜晓晴, 常本康, 邹继军. Cs、O激活方式对GaAs光电阴极的影响[J]. 真空科学与技术学报, 2006, 26(1): 1-7. DOI: 10.3969/j.issn.1672-7126.2006.01.001 DU Xiaoqing, CHANG Benkang, ZOU Jijun. Influence of Cs, O activation modes on GaAs photocathode[J]. Chinese Journal of Vacuum Science and Technology, 2006, 26(1): 1-7. DOI: 10.3969/j.issn.1672-7126.2006.01.001
[54] ZHANG Yijun, ZHANG Kaimin, LI Shan, et al. Effect of excessive Cs and O on activation of GaAs (100) surface: from experiment to theory[J]. Journal of Applied Physics, 2020, 128: 173103. DOI: 10.1063/5.0028042
[55] LIU Z, SUN Y, PETERSON S, et al. Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes[J]. Applied Physics Letters, 2008, 92: 241107. DOI: 10.1063/1.2945276
[56] PASTUSZKA S, TEREKHOV A S, WOLF A. 'Stable to unstable' transition in the (Cs, O) activation layer on GaAs (100) surfaces with negative electron affinity in extremely high vacuum[J]. Applied Surface Science, 1996, 99(4): 361-365. DOI: 10.1016/0169-4332(96)00106-7
[57] CHANLEK N, HERBERT J D, JONES R M, et al. High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3[J]. Journal of Physics D: Applied Physics, 2015, 48(37): 375102. DOI: 10.1088/0022-3727/48/37/375102
[58] LI Shan, ZHANG Yijun, ZHANG Kaimin, et al. Comparison of activation behavior of Cs-O and Cs-NF3-adsorbed GaAs (1 0 0)-β2 (2× 4) surface: From DFT simulation to experiment[J]. Journal of Colloid and Interface Science, 2022, 613: 117-125. DOI: 10.1016/j.jcis.2022.01.013
[59] SUN Y, KIRBY R E, MARUYAMA T, et al. The surface activation layer of GaAs negative electron affinity photocathode activated by Cs, Li, and NF3[J]. Applied Physics Letters, 2009, 95: 174109. DOI: 10.1063/1.3257730
[60] MULHOLLAN G A, BIERMAN J C. Enhanced chemical immunity for negative electron affinity GaAs photoemitters[J]. Journal of Vacuum Science & Technology A, 2008, 26(5): 1195-1197.
[61] KURICHIYANIL N, ENDERS J, FRITZSCHE Y, et al. A test system for optimizing quantum efficiency and dark lifetime of GaAs photocathodes[J]. Journal of Instrumentation, 2019, 14: P08025. DOI: 10.1088/1748-0221/14/08/P08025
[62] BAE J K, CULTRERA L, DIGIACOMO P, et al. Rugged spin-polarized electron sources based on negative electron affinity GaAs photocathode with robust Cs2Te coating[J]. Applied Physics Letters, 2018, 112: 154101. DOI: 10.1063/1.5026701
[63] CULTRERA L, GALDI A, BAE J K, et al. Long lifetime polarized electron beam production from negative electron affinity GaAs activated with Sb-Cs-O: trade-offs between efficiency, spin polarization, and lifetime[J]. Physical Review Accelerators and Beams, 2020, 23(2): 023401. DOI: 10.1103/PhysRevAccelBeams.23.023401
[64] BAE J K, GALDI A, CULTRERA L, et al. Improved lifetime of a high spin polarization superlattice photocathode[J]. Journal of Applied Physics, 2020, 127: 124901. DOI: 10.1063/1.5139674
[65] BISWAS J, WANG E, GAOWEI M, et al. High quantum efficiency GaAs photocathodes activated with Cs, O2, and Te[J]. AIP Advances, 2021, 11: 025321. DOI: 10.1063/5.0026839
[66] 李晓峰, 李莉, 杨文波, 等. 多碱光电阴极膜厚对阴极灵敏度的影响研究[J]. 红外技术, 2012, 34(7): 422-426. DOI: 10.3969/j.issn.1001-8891.2012.07.009 LI Xiaofeng, LI Li, YAN Wenbo, et al. Study on sensitivity of different thickness of multi-alkali photocathode[J]. Infrared Technology, 2012, 34(7): 422-426. DOI: 10.3969/j.issn.1001-8891.2012.07.009
[67] NÜTZEL G, LAVOUTE P. Semi-transparent photocathode with improved absorption rate: United States: 9960004B2[P]. 2018.
[68] 李晓峰, 赵恒, 张彦云, 等. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189 LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
[69] YAMAGUCHI H, LIU F, DEFAZIO J, et al. Active bialkali photo-cathodes on free-standing graphene substrates[J]. npj 2D Materials and Applications, 2017(1): 12.
[70] YAMAGUCHI H, LIU F, DEFAZIO J, et al. Quantum efficiency enhancement of bialkali photocathodes by an atomically thin layer on substrates[J]. Physica Status Solidi A, 2019, 216: 1900501. DOI: 10.1002/pssa.201900501
[71] GALDI A, BALAJKA J, DEBENEDETTI W J I, et al. Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates[J]. Applied Physics Letters, 2021, 118: 244101. DOI: 10.1063/5.0053186
[72] PARZYCK C T, GALDI A, NANGOI J K, et al. Single-crystal alkali antimonide photocathodes: high efficiency in the ultrathin limit[J]. Physical Review Letters, 2022, 128(11): 114801. DOI: 10.1103/PhysRevLett.128.114801