基于桶滚机动和诱饵投射的红外空空导弹对抗策略研究

Strategy of Barrel Roll and Decoy Deployment Against Infrared Air-to-Air Missile

  • 摘要: 机动规避和投射诱饵是战斗机对抗红外空对空导弹的有效措施。本文主要从桶滚机动和无动力型点源诱饵两方面进行了对抗策略研究。为了使研究更具实用性,在考虑桶滚机动所需条件和诱饵弹受力的前提下,阐述了诱饵弹的运动特性、干扰过程和对导弹制导系统的影响机理。为使研究更具适用性,本文假设空对空导弹采用真比例导引律或增广比例导引律,并且诱饵考虑在常规模式和应急模式下投射。建立了桶滚机动并伴有诱饵投射时对导弹制导精度影响的线性化时变模型和伴随模型。同时,通过仿真结果的分析与比较,验证了模型的正确性。脱靶量是表征防空导弹性能的一个重要参数,提出了平均脱靶量和最大脱靶量占比来分析伴随模型的仿真结果。在此基础上,分析了目标机的桶滚机动角速率和过渡机动方位角以及诱饵弹的齐投数量、投射间隔与投射方向策略对导弹脱靶量的影响规律。这将为战斗机对抗红外空对空导弹提供策略参考。

     

    Abstract: Evasive maneuvers and decoy deployment are effective measures against infrared (IR) air-to-air missiles for fighters. In this study, both aspects were considered: barrel roll maneuver and unpowered point source decoys. For practical purposes, the interference process, movement characteristics, and influence mechanism of the decoy on the missile guidance system are expounded, in which the conditions needed for the barrel roll maneuver and the force of the decoy are considered. In addition, the air-to-air missile is assumed to adopt the true proportional navigation law or augmented proportional navigation law, and the decoys are launched in the conventional mode or emergency mode. Linearized time-varying models and adjoint models for barrel roll maneuvers with decoy deployment influence on missile guidance precision are established. The correctness of these models was verified by a simulation result analysis and comparison. The miss distance is an important parameter for characterizing the performance of an air-defense missile. The average miss distance and percentage of maximum miss distance were proposed to analyze the adjoint model results. Based on the work mentioned above, the barrel roll rate and the transition step maneuver angle of the target aircraft, as well as the simultaneous launch quantity, the period between successive launches, and launch direction policy on the miss distance are analyzed to provide strategic references for fighters against IR air-to-air missiles.

     

/

返回文章
返回