-
Abstract: Evasive maneuvers and decoy deployment are effective measures against infrared (IR) air-to-air missiles for fighters. In this study, both aspects were considered: barrel roll maneuver and unpowered point source decoys. For practical purposes, the interference process, movement characteristics, and influence mechanism of the decoy on the missile guidance system are expounded, in which the conditions needed for the barrel roll maneuver and the force of the decoy are considered. In addition, the air-to-air missile is assumed to adopt the true proportional navigation law or augmented proportional navigation law, and the decoys are launched in the conventional mode or emergency mode. Linearized time-varying models and adjoint models for barrel roll maneuvers with decoy deployment influence on missile guidance precision are established. The correctness of these models was verified by a simulation result analysis and comparison. The miss distance is an important parameter for characterizing the performance of an air-defense missile. The average miss distance and percentage of maximum miss distance were proposed to analyze the adjoint model results. Based on the work mentioned above, the barrel roll rate and the transition step maneuver angle of the target aircraft, as well as the simultaneous launch quantity, the period between successive launches, and launch direction policy on the miss distance are analyzed to provide strategic references for fighters against IR air-to-air missiles.摘要: 机动规避和投射诱饵是战斗机对抗红外空对空导弹的有效措施。本文主要从桶滚机动和无动力型点源诱饵两方面进行了对抗策略研究。为了使研究更具实用性,在考虑桶滚机动所需条件和诱饵弹受力的前提下,阐述了诱饵弹的运动特性、干扰过程和对导弹制导系统的影响机理。为使研究更具适用性,本文假设空对空导弹采用真比例导引律或增广比例导引律,并且诱饵考虑在常规模式和应急模式下投射。建立了桶滚机动并伴有诱饵投射时对导弹制导精度影响的线性化时变模型和伴随模型。同时,通过仿真结果的分析与比较,验证了模型的正确性。脱靶量是表征防空导弹性能的一个重要参数,提出了平均脱靶量和最大脱靶量占比来分析伴随模型的仿真结果。在此基础上,分析了目标机的桶滚机动角速率和过渡机动方位角以及诱饵弹的齐投数量、投射间隔与投射方向策略对导弹脱靶量的影响规律。这将为战斗机对抗红外空对空导弹提供策略参考。
-
-
Table 1 Weight coefficients of power centroid
Target and decoys tstep $\begin{array}{l} {t_{{\text{step}}}} \hfill \\ + \frac{{{t_{ab}}}}{2} \hfill \\ \end{array} $ $\begin{array}{l} {t_{{\text{step}}}} \hfill \\ + {t_{ab}} \hfill \\ \end{array} $ $\begin{array}{l} {t_{{\text{step}}}} \hfill \\ + \frac{{3{t_{ab}}}}{2} \hfill \\ \end{array} $ … $\begin{array}{l} {t_{{\text{step}}}} \hfill \\ + \frac{{m{t_{ab}}}}{2} \hfill \\ \end{array} $ Target K1 K3 K3 K3 … K3 Decoy 1 K2 K4 0 0 … 0 Decoy 2 0 K4 K4 0 … 0 Decoy 3 0 0 K4 K4 $ \ddots $ 0 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \ddots $ $ \ddots $ 0 Decoy m 0 0 0 0 K4 K4 Table 2 Simulation parameters
Symbol/unit Values Symbol/unit Values tmax/s 7 ζ 0.707 τSH/s 0.11 N 3.5 τN/s 0.1 Vc/(m/s) 1200 τAP/s 0.14 tab/s 0.4 ωM/(rad/s) 19 ϕ0/deg 45 Table 3 The average miss of missile in the emergency launch mode
Guidance law First policy Second policy Third policy Fourth policy TPN 85.55 99.57 92.10 92.29 APN 87.28 103.71 94.71 95.01 -
[1] Raghav Harini Venkatesan, Nandan Kumar Sinha. Key factors that affect the performance of flares against a heat-seeking air-to-air missile[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2014, 11(4): 387-401. DOI: 10.1177/1548512913511357
[2] Giovanni Franzini, Luca Tardioli, Lorenzo Pollini, et al. Visibility augmented proportional navigation guidance[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(4): 983-991. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020411730080.html
[3] XU Yang, FANG Yangwang, WU Youli, et al. Proportional guidance intelligent regulation strategy under the infrared interference and maneuvering[J]. Journal of National University of Defense Technology, 2019, 41(3): 137-145. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112887337.html
[4] Paul Zarchan. Tactical and strategic missile guidance[M]. the 6th, AIAA, 2012.
[5] WANG Xiaohai, MENG Xiuyun, ZHOU Feng, et al. Sliding mode guidance law with impact angle constraint based on bias proportional navigation[J]. Systems Engineering and Electronics, 2021, 43(5): 1295-1302. DOI: 10.1007%2Fs11071-012-0482-3
[6] LI Kebo, LIANG Yangang, SU Wenshan, et al. Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception[J]. Science China Technological Sciences, 2018, 61(8): 1161-1174. DOI: 10.1007/s11431-018-9310-5
[7] LEE Suwon, LEE Youngjun, LEE Seokwon, et al. Data-driven capturability analysis for pure proportional navigation guidance considering target maneuver[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(5): 1209-1221. DOI: 10.1007/s42405-021-00387-7
[8] LI Kebo, LIAO Xuanping, LIANG Yangang, et al. Guidance strategy with impact angle constraint based on pure proportional navigation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724277.
[9] Satadal Ghosh, Debasish Ghose, Soumyendu Raha. Composite guidance for impact angle control against higher speed targets[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1): 98-117. DOI: 10.2514/1.G001232
[10] LI Kebo, LIANG Yangang, SU Wenshan, et al. Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception[J]. Science China Technological Sciences, 2018, 61(8): 1161-1174. DOI: 10.1007/s11431-018-9310-5
[11] FENG Tyan. The capture region of a general 3D TPN guidance law for missile and target with limited maneuverability[C]//Proc. American Control Conference, 2001: 512-517.
[12] BAI Zhihui, LI Kebo, SU Wenshan, et al. Capture region of RTPN guidance law against arbitrarily maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323947.
[13] SHI Zhenqing, LIANG Xiaolong, ZHANG Jiaqiang, et al. Modeling and simulation analysis of 3-D air-to-air missile attack zone under the condition of target maneuvers[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(3): 97-106. http://en.cnki.com.cn/Article_en/CJFDTotal-DJZD201903023.htm
[14] Ernst-Christian Koch. Review on pyrotechnic aerial infrared decoys[J]. Propellants, Explosives, Pyrotechnics, 2011, 26(1): 3-11. DOI: 10.1002/1521-4087(200101)26:1%3C3::AID-PREP3%3E3.0.CO;2-8/abstract
[15] Ilan Rusnak. Bounds on the root-mean-square miss of radar-guided missiles against sinusoidal target maneuvers[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1066-1069. DOI: 10.2514/1.52460
[16] Fumiaki Imado and Sachio Uehara. High-g barrel roll maneuvers against proportional navigation from optimal control viewpoint[J]. Journal of Guidance, Control, and Dynamics, 1988, 21(6): 876-881. http://www.onacademic.com/detail/journal_1000035874227010_0f7b.html
[17] Timo Sailaranta, Ari Siltavuori, Antti Pankkonen. Simple missile models against high-g barrel roll maneuver[C]//Proc. AIAA Guidance, Navigation, and Control Conference, 2011: 01-12.
[18] Ernst Christian Koch, Arno Hahma, Volker Weiser, et al. Metal-Fluorocarbon Pyrolants. XIII: High performance infrared decoy flare compositions based on MgB2 and Mg2Si and polytetrafluoroe-thylene/viton[J]. Propellants Explosives Pyrotechnics, 2010, 35: 1-7.
[19] Srinivasan Ramaswam, David A Vaitekunas, Willem H Gunter, et al. Improvements to the ShipIR/NTCS adaptive track gate algorithm and 3D flare particle model[C]//Proc. SPIE Defense + Security, 2017, 10178: 1-12.
[20] LI Shaoyi, ZHANG Kai, YIN Jianfei, et al. Study on IR target recognition approach in aerial jamming environment based on bayesian probabilistic model[J]. IEEE Access, 2019, 7: 50300-50316. DOI: 10.1109/ACCESS.2019.2910659
[21] SHI Chen. Research on target recognition for anti-jamming towards infrared decoys[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[22] Martin Weiss. Adjoint method for missile performance analysis on state space models[J]. Journal of Guidance, Control and Dynamics, 2005, 28(2): 236-248. DOI: 10.2514/1.7342
[23] Martin Weiss, Domenic Bucco. Adjoint method for hybrid guidance loop state-space models[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(4): 614-622. DOI: 10.2514/1.62954
[24] Martin Weiss, Domenic Bucco. Evaluation method for dual phase guided weapons based on the adjoint method[C]//Proc. AIAA Guidance, Navigation and Control Conference and Exhibit, 2007: 1-12.
[25] LI Quancheng, FAN Yonghua, WAN Shizheng, et al. Influence of the seeker blind range guidance policy on guidance precision[C]//Proc. IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 2019: 1120-1124.
[26] Vitaly Shalumov, Tal Shima. Weapon–target-allocation strategies in multiagent target–missile–defender engagement[J]. Journal of Guidance, Control and Dynamics, 2017, 40(10): 2452-2464. DOI: 10.2514/1.G002598
[27] Domenic Bucco and Martin Weiss. Blind range influence on guidance loop performance: an adjoint-based analysis[C]//Proc. AIAA Guidance, Navigation, and Control Conference, 2013: 1-16.
[28] WANG Weiqiang, JIA Xiaohong, FU Kuisheng, et al. Guidance precision analysis based on airborne IRCM stochastic process[J]. Infrared Technology, 2019, 41(2): 163-170. http://en.cnki.com.cn/Article_en/CJFDTotal-HWJS201902010.htm
[29] Arthur Vermeulen, Gerrit Maes. Missile avoidance maneuvres with simultaneous decoy deployment[C]//Proc. AIAA Guidance, Navigation, and Control Conference, 2009: 1-17.
[30] HUANG Hesong, TONG Zhongxiang, LI Taorui, et al. Defense strategy of aircraft confronted with IR guided missile[J]. Mathematical Problems in Engineering, 2017, 2017: 1-9. http://d.wanfangdata.com.cn/periodical/c1c92ce628da29b08dfa35b2d46ccd19
[31] Hecht C. Homing guidance using angular acceleration of the line of sight[C]//Proc. Navigation & Control Conference, 1991: 856-869.
[32] Satadal Ghosh, Debasish Ghose, Soumyendu Raha. Unified time-to-go algorithms for proportional navigation class of guidance[J]. Journal of Guidance, Control and Dynamics, 2016, 39(6): 1188-1205. DOI: 10.2514/1.G001472