Citation: | HAN Shunjie, SU Hua, GOU Zeen. Active Disturbance Rejection Control Strategy Based on a Friction Servo Tracking Model[J]. Infrared Technology , 2024, 46(12): 1418-1424. |
A self-anti-disturbance control method based on an elastoplastic friction model is proposed to address the problem of frictional nonlinear and external disturbances that affect the tracking performance of an optoelectronic stabilized platform. First, a spatial state model of a servo system based on elastoplastic friction is established. Second, the proposed elastoplastic model is used to compensate for the friction nonlinearity in the system via a feedforward method while initially suppressing the disturbance of the friction torque on the system and reducing the influence of measurement noise on the system, Third, a composite controller combining friction compensation and self-anti-disturbance control is designed based on this model. Finally, simulation experiments are performed on a servo system with friction. The simulation and experimental results show that the composite control scheme can improve the tracking performance of the photoelectrically stabilized platform. Moreover, the results verify the effectiveness and robustness of the proposed control method.
[1] |
孔德杰. 机械光电平台扰动力矩抑制与改善[D]. 长春: 中科院长春光机所, 2013.
KONG Dejie. Disturbance Torque Suppression and Improvement of Mechanical Optoelectronic Platforms [D]. Changchun: Changchun Institute of Optics and Mechanics, Chinese Academy of Sciences, 2013.
|
[2] |
王正玺, 张葆, 李贤涛, 等. 航空光电稳定平台高性能摩擦力补偿方案[J]. 航空学报, 2017, 38(12): 277-284.
WANG Zhengxi, ZHANG Bao, LI Xiantao, et al. Friction compensation strategy of high performance for aerial photoelectrical stabilized platform[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 277-284.
|
[3] |
CHEN P, LIU X, YAN Q. Adaptive friction compensation for a class of mechanical systems based on LuGre model[J]. Int. J. Robust. Nonlinear Control, 2022, 32: 4510-4534. DOI: 10.1002/rnc.6042
|
[4] |
Canudas de Wit, H Olsson, K J Astrom, et al. A new model for control of systems with friction[J]. IEEE Trans. on Automatic Control, 1995, 40(3): 419-425. DOI: 10.1109/9.376053
|
[5] |
YAO J, DENG W, JIAO Z. Adaptive control of hydraulic actuators with LuGre model-based friction compensation[J]. IEEE Trans. Ind. Electron, 2015, 62: 6469-6477. DOI: 10.1109/TIE.2015.2423660
|
[6] |
Dupont P, Hayward V, Armstrong B, et al. Single state elastoplastic friction models[J]. IEEE Trans. on Automatic Control, 2002, 47(5): 787-792. DOI: 10.1109/TAC.2002.1000274
|
[7] |
吴旭, 张倩, 王群京, 等. 基于摩擦补偿的伺服转台自抗扰控制策略研究[J]. 微电机, 2021, 54(5): 62-66, 85.
WU Xu, ZHANG Qian, WANG Qunjing, et al. Research on active disturbance rejection control strategy of servo turntable based on friction compensation [J]. Micromotor, 2021, 54(5): 62-66, 85.
|
[8] |
HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. DOI: 10.1109/TIE.2008.2011621
|
[9] |
WANG L, LIU X, WANG C. Disturbance frequency adaptive control for photo-electric stabilized platform based on improving extended state observation[J]. Optik, 2019, 187: 198-204. DOI: 10.1016/j.ijleo.2019.03.093
|
[10] |
周涛, 朱景成. 机载光电跟踪平台伺服系统自抗扰控制[J]. 光电工程, 2011, 38(4): 31.
ZHOU Tao, ZHU Jingcheng. Active disturbance rejection control of servo system of airborne photoelectric tracking platform[J]. Optoelectronics, 2011, 38(4): 31.
|
[11] |
刘志刚, 李世华. 基于永磁同步电机模型辨识与补偿的自抗扰控制器[J]. 中国电机工程学报, 2008, 28(24): 118.
LIU Zhigang, LI Shihua. Automatic disturbance rejection controller based on permanent magnet synchronous motor model identification and compensation[J]. Chinese Journal of Electrical Engineering, 2008, 28(24): 118.
|
[12] |
郭磊磊, 朱林强, 曹玲芝, 等. 基于扰动观测器的永磁同步风力发电机无速度传感器控制[J]. 电气传动, 2022, 52(23): 3-10.
GUO Leilei, ZHU Linqiang, CAO Lingzhi, et al. Speed sensorless control of permanent magnet synchronous wind turbines based on disturbance observer [J]. Electrical Transmission, 2022, 52(23): 3-10.
|
[1] | LI Jianghui. A Method and System for Infrared Image Simulation Based on ModelSim[J]. Infrared Technology , 2024, 46(7): 802-806. |
[2] | WANG Xia, ZHAO Jiabi, SUN Qiyang, JIN Weiqi. Performance Evaluation Model for Infrared Polarization Imaging System[J]. Infrared Technology , 2023, 45(5): 437-445. |
[3] | KONG Derui, XIA Ming, LI Haiying, CHEN Jun, ZHAO Peng. Theoretical Analysis and Matlab Simulation of Dynamic Vibration Absorber for Single-Piston Linear Compressor[J]. Infrared Technology , 2021, 43(10): 1014-1021. |
[4] | ZHANG Jingyang, YAN Limin, CHEN Zhiheng. Nighttime Fog Removal Using the Dark Point Light Source Model[J]. Infrared Technology , 2021, 43(8): 798-803. |
[5] | HU Yang, CHEN Cheng, HUA Sangtun, QIU Yafeng. Thermal Calculation of Countercurrent Cooling Tower and Design of Infrared Thermal Image Temperature Control System[J]. Infrared Technology , 2021, 43(3): 225-229. |
[6] | PAN Hao, MA Yi, ZHOU Fangrong, MA Yutang, QIAN Guochao, WEN Gang. Research on the Theoretical Model Between Solar-blind UV and Atmospheric Temperature during Atmospheric Transmission[J]. Infrared Technology , 2020, 42(10): 1007-1012. |
[7] | HAN Kun, YAO Ze, QIAO Kai, YANG Shuning, HE Yingping. Theoretical Model of Dynamic MTF of Low-Light-Level ICCD[J]. Infrared Technology , 2020, 42(3): 294-299. |
[8] | SUN Jianning, SI Shuguang, WANG Xingchao, JIN Muchun, LI Dong, REN Ling, HOU Wei, ZHAO Min, GU Ying, QIAO Fangjian, ZHANG Haoda, CAO Yiqi. Preparation Method of K2CsSb Photocathode Using the Reflectance Theory Model[J]. Infrared Technology , 2017, 39(12): 1087-1091. |
[9] | ZHANG Yao-jun, WU Gui-ling, LI Lei. Fusion for Infrared and Visible Light Images Based on Shearlet Transform and Quantum Theory Model[J]. Infrared Technology , 2015, (5): 418-423. |
[10] | Theoretic Module of Uncooled IR Detector Performance Improvement[J]. Infrared Technology , 2002, 24(4): 31-34. DOI: 10.3969/j.issn.1001-8891.2002.04.009 |
1. |
邱祥彪,杨晓明,孙建宁,王健,丛晓庆,金戈,曾进能,张正君,潘凯,陈晓倩. 高空间分辨微通道板现状及发展. 红外技术. 2024(04): 460-466 .
![]() |