Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
WANG Xia, ZHAO Jiabi, SUN Qiyang, JIN Weiqi. Performance Evaluation Model for Infrared Polarization Imaging System[J]. Infrared Technology , 2023, 45(5): 437-445.
Citation: WANG Xia, ZHAO Jiabi, SUN Qiyang, JIN Weiqi. Performance Evaluation Model for Infrared Polarization Imaging System[J]. Infrared Technology , 2023, 45(5): 437-445.

Performance Evaluation Model for Infrared Polarization Imaging System

  • Received Date: 2023-04-14
  • Rev Recd Date: 2023-04-28
  • Publish Date: 2023-05-20
  • Although infrared polarization imaging systems have been developed rapidly and widely, a model for evaluating their performance has not been sufficiently developed. Performance models that can match advanced polarization imaging systems are urgently required. Regarding the similarity between the training process of a deep learning network and the process of extracting cognitive information from the human brain, this paper introduces a deep learning method in the field of system performance modeling for the first time and proposes a performance model for infrared polarization imaging systems that can automatically evaluate system performance based on two-dimensional images. The model includes two main modules: a degradation module and a performance awareness module. When evaluating a new system, high-quality original images are input and sequentially passed through an imaging system degradation module, customized according to the hardware parameters of the system, and input into a performance awareness module to obtain the final target acquisition performance. Moreover, to verify the effectiveness of the model, we realized a self-built infrared polarization dataset for sea surface scenes based on infrared radiation theory, and trained and tested the networks. The results obtained when the model was applied to evaluate the performance of infrared polarization imaging systems showed good agreement with subjective perception.
  • loading
  • [1]
    Scott L B, Condiff L R. C2NVEO advanced FLIR systems performance model[C]//Proc. SPIE, 1990, 1309: 168-180.
    [2]
    Scott L B, D'Agostino J A. NVEOD FLIR92 thermal imaging systems performance model[C]//Proc. SPIE, 1992, 1689: 194-203.
    [3]
    Maurer T, Driggers R G, Vollmerhausen R H. 2002 NVTherm improve-ments[C]//Proc. SPIE, 2002, 4719: 15-23.
    [4]
    Edwards T C, Vollmerhausen R H, Driggers R G, et al. NVESD time-limited search model[C]//Proc. SPIE, 2003, 5076: 53-59.
    [5]
    Bijl P, Valeton J M. Triangle orientation discrimination: the alternative to minimum resolvable temperature difference and minimum resolvable contrast[J]. Optical Engineering, 1998, 37: 1976-1983. doi:  10.1117/1.601904
    [6]
    Vollmerhausen R H, Jacobs E and Driggers R G. New Metric for Predicting target acquisition Performance [J]. Optical Engineering, 2004, 43(11): 2806-2818. doi:  10.1117/1.1799111
    [7]
    Greif H J, Weiss A R, Wittenstein W. pcSitoS: A new tool for image-based IR system simulation [C]//Proc. SPIE, 2009, 7481: 748107.
    [8]
    Hogervorst M A, Bijl P, Valeton J M. Capturing the sampling effects: a TOD sensor performance model [C]//Proc. SPIE, 2001, 4372: 62-73.
    [9]
    Guimaraes E F. Investigation of minimum resolvable temperature difference formulation for polarized thermal imaging range prediction[D]. America: Naval Postgraduate School, 1999.
    [10]
    Yildirim M. Modeling second generation FLIR sensor detection recognition and identification range with polarization filtering[D]. America: Naval Postgraduate School, 2000.
    [11]
    周程灏. 红外偏振成像系统作用距离建模与分析[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    ZHOU Chenghao. Modeling and Analysis of the Operating Range of Infrared Polarization Imaging System[D]. Harbin: Harbin Institute of Technology, 2013.
    [12]
    夏润秋, 王霞, 金伟其, 等. 海面环境中红外偏振成像系统作用距离模型[J]. 红外与激光工程, 2016, 45(3): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201603010.htm

    XIA Runqiu, WANG Xia, JIN Weiqi, et al. Distance model of infrared polarization imaging system used in sea-surface environment[J]. Infrared and Laser Engineering, 2016, 45(3): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201603010.htm
    [13]
    梁建安. 基于红外偏振成像技术的水面杂波抑制方法研究[D]. 北京: 北京理工大学, 2019.

    LIANG Jianan. Research on Water Surface Clutter Suppression Method Based on Infrared Polarization Imaging Technology[D]. Beijing: Beijing Institute of Technology, 2019.
    [14]
    ZHANG J Q, WANG X R. Modeling and Performance Evaluation Theory of Photoelectric Imaging System[M]. Xi'an: Xidian University Publishing House, 2010.
    [15]
    Redmon J, Divvala S, Girshick R. You only look once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
    [16]
    Jocher G. YOLOv5 release v4.0[EB/OL]. [2023-01-20]. https://github.com/ultralytics/yoloV5.
    [17]
    SU Shaolin, YAN Qingsen, ZHU Yu, et al. Blindly assess image quality in the wild guided by a self-adaptive hyper network[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3664-3673.
    [18]
    HE Si, WANG Xia, XIA Runqiu, et al. Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering[J]. Applied Optics, 2018, 57(7): B150-B159. doi:  10.1364/AO.57.00B150
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (207) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return