SONG Hongwei, LIU Su, LI Haiying, YU Hongyou, SHI Shengbing, GUO Xiuli, LI Haolan, ZHANG Yaping, WANG Xiangqian. Reliability Verification Test of Mid-Wave Infrared 640×512(25 μm) Detector Assembly[J]. Infrared Technology , 2024, 46(8): 879-882.
Citation: SONG Hongwei, LIU Su, LI Haiying, YU Hongyou, SHI Shengbing, GUO Xiuli, LI Haolan, ZHANG Yaping, WANG Xiangqian. Reliability Verification Test of Mid-Wave Infrared 640×512(25 μm) Detector Assembly[J]. Infrared Technology , 2024, 46(8): 879-882.

Reliability Verification Test of Mid-Wave Infrared 640×512(25 μm) Detector Assembly

More Information
  • Received Date: July 12, 2022
  • Revised Date: May 29, 2024
  • The reliability requirements for detector assembly have increased significantly with the development of infrared detector technology. Traditional methods of assessing detector reliability along with the entire system are insufficient to meet these requirements. To address this issue, this paper investigates the reliability verification of a 640×512 (25 μm) mid-wave infrared detector module under environmental stress. Key components of the detector were subjected to high-temperature accelerated life tests and continuous operation tests. The overall reliability of the detector module was estimated based on the specialized reliability test data of critical components. The evaluation results, using selected reliability assessment methods, indicate that the developed module meets the reliability standards. The reliability verification and assessment methods used in this study provide an objective and accurate evaluation of the cooled infrared detector module.

  • [1]
    PAN Yong, HUANG Jinyong, HU Ning. Generality to Reliability[M]. Beijing: Publishing House of Electronic Industry, 2015.
    [2]
    任占勇, 罗学刚, 汪启华. 可靠性鉴定和验收试验: GJB 899A-2009[S]. 北京: 中国标准出版社, 2009.

    REN Zhanyong, LUO Xuegang, WANG Qihua. Reliability Testing for Qualification and Production Acceptance: GJB 899A-2009[S]. Beijing: China Standard Press, 2009.
    [3]
    张亚平, 朱颖峰, 刘湘云, 等. 基于材料放气特性的杜瓦真空失效时间研究[J]. 真空, 2016, 53(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201601017.htm

    ZHANG Yaping, ZHU Yingfeng, LIU Xiangyun, et al. Dewar vaccum failure time based on the material outgassing characteristics[J]. Vacuum, 2016, 53(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201601017.htm
    [4]
    王琦艺, 夏丽昆, 曾邦泽, 等. 对某型红外热像仪可靠性增长的研究与改进[J]. 红外技术, 2022, 44(6): 628-634. http://hwjs.nvir.cn/article/id/ed3979bf-f7fe-4028-ba83-08aab6862979

    WANG Qiyi, XIA Likun, ZENG Bangze, et al. Research and improvement on reliability growth of a type of infrared thermal imager[J]. Infrared Technology, 2022, 44(6): 628-634. http://hwjs.nvir.cn/article/id/ed3979bf-f7fe-4028-ba83-08aab6862979
    [5]
    施荣民, 朱广荣, 吴飒. 军用装备实验室环境试验方法第16部分: 振动试验: GJB150.16A-2009[S]. 北京: 国家标准出版社, 2009.

    SHI Rongmin, ZHU Guangrong, WU Sa. Laboratory environmental test methods for military materiel——Part16: Vibration test: GJB150.16A-2009[S]. Beijing: China Standard Press, 2009.
  • Cited by

    Periodical cited type(10)

    1. 王振,刘磊. 基于改进分水岭算法的电力设备红外图像分割. 红外技术. 2025(04): 484-492 . 本站查看
    2. 刘强,刘志国. 室外动态车标图像关键特征边缘识别仿真. 计算机仿真. 2024(03): 487-491 .
    3. 李双营,邵亚飞. 城市周边流域有机污染物不同分布特征提取. 计算机仿真. 2024(07): 281-284+365 .
    4. 王洁,伍弘,詹仲强,李金良,金铭,陈文涛. 基于Lazy Snapping混合模拟退火算法的高压开关柜温度场红外三维图像重建仿真. 红外技术. 2023(03): 276-281 . 本站查看
    5. 刘训星,张海民. 基于数学形态学的路面裂纹图像分割方法. 辽东学院学报(自然科学版). 2023(02): 130-135 .
    6. 周建起,刚建华. 数字全息技术的激光超精密加工表面检测研究. 激光杂志. 2023(08): 243-247 .
    7. 翁宇游,郑州,郭俊,赵志超,谢炜,胡雨. 改进U-Net网络的接地网图像超像素分割. 激光与红外. 2023(08): 1196-1202 .
    8. 黄祥声,乐治济,吴敏辉,倪秀楠,钟茗秋,陈川. 基于改进时域高通滤波红外图像的海上风机塔架腐蚀速率预测. 激光与红外. 2023(10): 1527-1533 .
    9. 朱笑,袁丽华. 基于红外热成像的CFRP复合材料低速冲击损伤表征. 复合材料学报. 2022(08): 4164-4171 .
    10. 何翠萍. 应用区域生长的无人船红外图像精确分割方法. 信息与电脑(理论版). 2022(24): 81-83 .

    Other cited types(3)

Catalog

    Article views (129) PDF downloads (71) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return