DONG Lanxiao, NAN Xueli, LIU Haoyang, DUAN Qikai, DONG Jinfeng. Broadband Terahertz Asymmetric Primary and Secondary Waveguide Directional Coupler Design[J]. Infrared Technology , 2022, 44(9): 986-990.
Citation: DONG Lanxiao, NAN Xueli, LIU Haoyang, DUAN Qikai, DONG Jinfeng. Broadband Terahertz Asymmetric Primary and Secondary Waveguide Directional Coupler Design[J]. Infrared Technology , 2022, 44(9): 986-990.

Broadband Terahertz Asymmetric Primary and Secondary Waveguide Directional Coupler Design

More Information
  • Received Date: December 21, 2021
  • Revised Date: April 10, 2022
  • According to the application prospects of micro drone radar, precision guided weapon radar, and wireless communication terminal equipment, an asymmetric primary and secondary waveguide directional coupler is designed. The coupler uses an equally spaced porous coupling structure with different shapes of main and secondary waveguides, and the signal of the TE10 mode of the rectangular waveguide is coupled to the TE11 mode of the secondary circular waveguide. The isolated port achieves the effect of reverse cancelation, and good coupling and isolation can be obtained using the principle of phase superposition. The center frequency of the directional coupler and the relative bandwidth are 400 and 40 GHz, respectively. The results show that the coupling degree of the directional coupler is approximately -13.8 to -12.8 dB, which achieves a weak coupling effect and has a good coupling stability. The isolation is better than -24.5 dB, the through insertion loss is approximately -3 to -2.5 dB, and the performance is good.
  • [1]
    Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging: modern techniques and applications[J]. Laser & Photonics Reviews, 2011, 5(1): 124-166.
    [2]
    CHIU C L, LIAO Y H. Analysis of a single ring resonator with 2×2 90-degree multimode waveguide turning couplers[J]. Optics Communications, 2016, 361: 124-129. DOI: 10.1016/j.optcom.2015.09.096
    [3]
    郑新, 刘超. 太赫兹技术的发展及在雷达和通讯系统中的应用(Ⅰ)[J]. 微波学报, 2010, 26(6): 1-6. Doi:10.14183/j.cnki.1005-6122.2010. 06.014.

    ZHENG Xin, LIU Chao. Recent development of THz technology and its application in radar and communication system(Ⅰ)[J]. Journal of Microwaves, 2010, 26(6): 1-6. Doi: 10.14183/j.cnki.1005-6122.2010.06.014.
    [4]
    皇甫一江. 太赫兹真空电子器件的发展及其在雷达中的应用[J]. 舰船电子对抗, 2021, 44(6): 111-116. Doi: 10.16426/j.cnki.jcdzdk. 2021.06.022.

    HUANGFU Yijiang. The development of Terahertz vacuum electric devices and their application to radars[J]. Shipboard Electronic Countermeasure, 2021, 44(6): 111-116. Doi: 10.16426/j.cnki.jcdzdk. 2021.06.022.
    [5]
    Hirata A, Yamaguchi R, Kosugi T, et al. 10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal[J]. IEEE Transactions on Microwave Theory & Techniques, 2009, 57(5): 1102-1109.
    [6]
    曹乃胜, 罗勇, 王建勋. 圆波导-矩形波导小孔耦合定向耦合器设计[J]. 强激光与粒子束, 2008(4): 637-640. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200804024.htm

    CAO Naisheng, LUO Yong, WANG Jianxun. Design of aperture-coupling directional coupler[J]. High Power Laser and Particle Beams, 2008(4): 637-640. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200804024.htm
    [7]
    Gentili G G, Lucci L, Nesti R, et al. A novel design for a circular waveguide directional coupler[J]. IEEE Transactions on Microwave Theory & Techniques, 2009, 57(7): 1840-1849.
    [8]
    陈卯燕, 杨欢, 马军, 等. 一种Q波段多孔耦合型定向耦合器[J]. 微波学报, 2020, 36(5): 74-77, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB202005016.htm

    CHEN Maoyan, YANG Huan, MA Jun, at el. A Q-band directional coupler based on multi-hole coupling[J]. Journal of Microwaves, 2020, 36(5): 74-77, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB202005016.htm
    [9]
    Gallot G, Jamison S P, Mcgowan R W, et al. Terahertz waveguides[J]. J. Opt. Soc. Am. B, 2000, 17(5): 851-863. DOI: 10.1364/JOSAB.17.000851
    [10]
    孙玉洁. 硅基太赫兹波导定向耦合器的设计及制备[D]. 太原: 中北大学, 2017.

    SUN Yujie. Design and Fabrication on Silicon-based Terahertz Waveguide Directional Coupler[D]. Taiyuan: North University Of China, 2017.
    [11]
    宋俊逸. 大功率毫米波过模波导定向耦合器的设计[D]. 成都: 电子科技大学, 2018.

    SONG Junyi. Design of Over-moded Waveguide Directional Coupler For High Power Millimeter Wave Transmission Line[D]. Chengdu: School of Electronic Science and Engineering, 2018.
    [12]
    侯艳茹, 胡卫东, 孙浩. 一种16孔TE21模耦合器的改进设计[J]. 微波学报, 2020, 36(S1): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2020S1075.htm

    HOU Yanru, HU Weidong, SUN Hao. An improved design of 16-hole TE21 mode coupler[J]. Journal of Microwaves, 2020, 36(S1): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2020S1075.htm
    [13]
    Bethe H A. Theory of diffraction by small holes[J]. Physical Review, 1944, 66(7-8): 163.
  • Related Articles

    [1]WANG Haipeng, MU Yingchun, PENG Qiusi, HUANG Youwen, LI Junbing, GONG Xiaodan, LIU Yue, AO Yu, ZHOU Xuchang, LI Dongsheng, Kong Jincheng. ICP Dry Etching of Type Ⅱ InAs/GaSb Superlattice Long-wavelength Focal Plane Arrays[J]. Infrared Technology , 2022, 44(10): 1027-1032.
    [2]REN Yang, QIN Gang, LI Junbin, YANG Jin, LI Yanhui, YANG Chunzhang, KONG Jincheng. Characterization and Analysis of Interface Characteristics of InAs/GaSb Type-II Superlattice Materials[J]. Infrared Technology , 2022, 44(2): 115-122.
    [3]ZHANG Zhou, WANG Liangheng, YANG Yu, LI Yuntao, DING Yanyan, LEI Huawei, LIU Bin, ZHOU Wenhong. Research on Mid-/Long-wavelength Dual Band Infrared Focal Plane Array Photodetector Based on Type-Ⅱ Superlattice[J]. Infrared Technology , 2018, 40(9): 863-867.
    [4]WANG Liangheng, LI Yuntao, LEI Huawei, YANG Yu, DING Yanyan, ZHANG Zhou, LIU Bin, ZHOU Wenhong. Long-wavelength Super Lattice Infrared Detectors Based on InAs/GaSb[J]. Infrared Technology , 2018, 40(5): 473-476.
    [5]LIN Su-zhen, YANG Feng-bao, ZHOU Xiao, Li Wei-wei. Progress on Fusion Technology for Imaging of Dual-color Mid-wave Infrared[J]. Infrared Technology , 2012, 34(4): 217-223. DOI: 10.3969/j.issn.1001-8891.2012.04.008
    [6]LIN Su-zhen, YANG Feng-bao, ZHOU Xiao, HE Dong. Point Target Imaging Characteristic Differences of Dual-color Mid-wave Infrared[J]. Infrared Technology , 2011, 33(10): 580-584. DOI: 10.3969/j.issn.1001-8891.2011.10.005
    [7]ZENG Ge-hong, SHI Yan-li, ZHUANG Ji-sheng. Principles, Status and Prospect of Type Ⅱ Superlattice Infrared Detectors[J]. Infrared Technology , 2011, 33(6): 311-314. DOI: 10.3969/j.issn.1001-8891.2011.06.001
    [8]WANG Yi-feng, YU Lian-jie, TIAN Ying. Quantitative Analysis and Calculation of Spectral Crosstalk of Type Ⅱ Superlattice Bispectral Infrared Detectors[J]. Infrared Technology , 2011, 33(5): 293-295. DOI: 10.3969/j.issn.1001-8891.2011.05.011
    [9]SHI Yan-li, YU Lian-jie, TIAN Ya-fang. Development Status of InAs/(In)GaSb Ⅱ-Type Super-Lattice Infrared Detector[J]. Infrared Technology , 2007, 29(11): 621-626. DOI: 10.3969/j.issn.1001-8891.2007.11.001
    [10]WANG Hai-tao, GUO Liang-xian. Cooled Thermal Imaging Mid-Wavelength Infrared Zoom Camera[J]. Infrared Technology , 2007, 29(1): 8-11. DOI: 10.3969/j.issn.1001-8891.2007.01.003
  • Cited by

    Periodical cited type(4)

    1. 李茹一,柯铭,王路斌,刘珮,高晋,王刚. 面向降质光电图像的脑启发无人机小目标鲁棒检测方法. 信号处理. 2025(05): 886-905 .
    2. 张建君,陈玉丹,刘玉玲,张明明,黄富瑜. 基于改进YOLOv5s模型的红外弱小目标检测方法. 应用光学. 2024(05): 975-981 .
    3. 刘子瑞. 基于YOLOV4算法的优化低空无人机的检测与跟踪. 黑龙江科学. 2023(06): 70-72 .
    4. 韩自强,岳明凯,张骢,高棋. 基于孪生网络的无人机目标多模态融合检测. 红外技术. 2023(07): 739-745 . 本站查看

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return