DONG Lanxiao, NAN Xueli, LIU Haoyang, DUAN Qikai, DONG Jinfeng. Broadband Terahertz Asymmetric Primary and Secondary Waveguide Directional Coupler Design[J]. Infrared Technology , 2022, 44(9): 986-990.
Citation: DONG Lanxiao, NAN Xueli, LIU Haoyang, DUAN Qikai, DONG Jinfeng. Broadband Terahertz Asymmetric Primary and Secondary Waveguide Directional Coupler Design[J]. Infrared Technology , 2022, 44(9): 986-990.

Broadband Terahertz Asymmetric Primary and Secondary Waveguide Directional Coupler Design

More Information
  • Received Date: December 21, 2021
  • Revised Date: April 10, 2022
  • According to the application prospects of micro drone radar, precision guided weapon radar, and wireless communication terminal equipment, an asymmetric primary and secondary waveguide directional coupler is designed. The coupler uses an equally spaced porous coupling structure with different shapes of main and secondary waveguides, and the signal of the TE10 mode of the rectangular waveguide is coupled to the TE11 mode of the secondary circular waveguide. The isolated port achieves the effect of reverse cancelation, and good coupling and isolation can be obtained using the principle of phase superposition. The center frequency of the directional coupler and the relative bandwidth are 400 and 40 GHz, respectively. The results show that the coupling degree of the directional coupler is approximately -13.8 to -12.8 dB, which achieves a weak coupling effect and has a good coupling stability. The isolation is better than -24.5 dB, the through insertion loss is approximately -3 to -2.5 dB, and the performance is good.
  • [1]
    Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging: modern techniques and applications[J]. Laser & Photonics Reviews, 2011, 5(1): 124-166.
    [2]
    CHIU C L, LIAO Y H. Analysis of a single ring resonator with 2×2 90-degree multimode waveguide turning couplers[J]. Optics Communications, 2016, 361: 124-129. DOI: 10.1016/j.optcom.2015.09.096
    [3]
    郑新, 刘超. 太赫兹技术的发展及在雷达和通讯系统中的应用(Ⅰ)[J]. 微波学报, 2010, 26(6): 1-6. Doi:10.14183/j.cnki.1005-6122.2010. 06.014.

    ZHENG Xin, LIU Chao. Recent development of THz technology and its application in radar and communication system(Ⅰ)[J]. Journal of Microwaves, 2010, 26(6): 1-6. Doi: 10.14183/j.cnki.1005-6122.2010.06.014.
    [4]
    皇甫一江. 太赫兹真空电子器件的发展及其在雷达中的应用[J]. 舰船电子对抗, 2021, 44(6): 111-116. Doi: 10.16426/j.cnki.jcdzdk. 2021.06.022.

    HUANGFU Yijiang. The development of Terahertz vacuum electric devices and their application to radars[J]. Shipboard Electronic Countermeasure, 2021, 44(6): 111-116. Doi: 10.16426/j.cnki.jcdzdk. 2021.06.022.
    [5]
    Hirata A, Yamaguchi R, Kosugi T, et al. 10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal[J]. IEEE Transactions on Microwave Theory & Techniques, 2009, 57(5): 1102-1109.
    [6]
    曹乃胜, 罗勇, 王建勋. 圆波导-矩形波导小孔耦合定向耦合器设计[J]. 强激光与粒子束, 2008(4): 637-640. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200804024.htm

    CAO Naisheng, LUO Yong, WANG Jianxun. Design of aperture-coupling directional coupler[J]. High Power Laser and Particle Beams, 2008(4): 637-640. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200804024.htm
    [7]
    Gentili G G, Lucci L, Nesti R, et al. A novel design for a circular waveguide directional coupler[J]. IEEE Transactions on Microwave Theory & Techniques, 2009, 57(7): 1840-1849.
    [8]
    陈卯燕, 杨欢, 马军, 等. 一种Q波段多孔耦合型定向耦合器[J]. 微波学报, 2020, 36(5): 74-77, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB202005016.htm

    CHEN Maoyan, YANG Huan, MA Jun, at el. A Q-band directional coupler based on multi-hole coupling[J]. Journal of Microwaves, 2020, 36(5): 74-77, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB202005016.htm
    [9]
    Gallot G, Jamison S P, Mcgowan R W, et al. Terahertz waveguides[J]. J. Opt. Soc. Am. B, 2000, 17(5): 851-863. DOI: 10.1364/JOSAB.17.000851
    [10]
    孙玉洁. 硅基太赫兹波导定向耦合器的设计及制备[D]. 太原: 中北大学, 2017.

    SUN Yujie. Design and Fabrication on Silicon-based Terahertz Waveguide Directional Coupler[D]. Taiyuan: North University Of China, 2017.
    [11]
    宋俊逸. 大功率毫米波过模波导定向耦合器的设计[D]. 成都: 电子科技大学, 2018.

    SONG Junyi. Design of Over-moded Waveguide Directional Coupler For High Power Millimeter Wave Transmission Line[D]. Chengdu: School of Electronic Science and Engineering, 2018.
    [12]
    侯艳茹, 胡卫东, 孙浩. 一种16孔TE21模耦合器的改进设计[J]. 微波学报, 2020, 36(S1): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2020S1075.htm

    HOU Yanru, HU Weidong, SUN Hao. An improved design of 16-hole TE21 mode coupler[J]. Journal of Microwaves, 2020, 36(S1): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2020S1075.htm
    [13]
    Bethe H A. Theory of diffraction by small holes[J]. Physical Review, 1944, 66(7-8): 163.
  • Related Articles

    [1]WU Huiyang, WANG Zeyang, HUANG Xinjun, ZHANG Yan, SHI Xiaonan, ZHANG Yunfei. Calculation of Infrared Scattering Transmittance of Aerosol[J]. Infrared Technology , 2022, 44(2): 151-156.
    [2]ZHAO Zhijun, XU Fangyu, WEI Chaoqun, YANG Kun. Study on Measurement Method for Total Infrared Atmospheric Transmittance[J]. Infrared Technology , 2018, 40(7): 718-722.
    [3]LIANG Juan, XU Guoyue, GUO Tengchao, TAN Shujuan, HUANG Jinguo. Study on Key Factor Influencing Compatible Property of Low-Emissivity Coating with Metamaterials[J]. Infrared Technology , 2018, 40(1): 14-19,46.
    [4]CHEN Qun, XU Xin, WANG Zhenyao, QIAN Yunsheng. Optical Filter Transmittance Test Based on ICCD Photon Counting[J]. Infrared Technology , 2017, 39(8): 710-716.
    [5]ZHAO Li-Jun, OU Wen, YAN Jian-Hua, MING An-Jie, YUAN Feng, XIA Yan. Fabrication of a Thermopile Infrared Detector That Compatible with CMOS Process[J]. Infrared Technology , 2012, 34(2): 89-94. DOI: 10.3969/j.issn.1001-8891.2012.02.006
    [6]GAO Yong-fang, SHI Jia-ming, ZHAO Da-peng. Analysis on Far Infrared and Laser Band Compatible Camouflage of One-dimensional Doped Photonic Crystals[J]. Infrared Technology , 2010, 32(4): 235-238. DOI: 10.3969/j.issn.1001-8891.2010.04.012
    [7]LI Feng-lei, XU Guo-yue, YU Hui-juan, HU Chen, SHAO Chun-ming, CHENG Chuan-wei. Preparation of Infrared Camouflage Coatings and Its Compatibility Radar Absorbing Coatings[J]. Infrared Technology , 2009, 31(7): 415-419. DOI: 10.3969/j.issn.1001-8891.2009.07.011
    [8]Uncontrollable FOV Control Systems and Their Electromagnetic Compatibility[J]. Infrared Technology , 2009, 31(5): 267-269. DOI: 10.3969/j.issn.1001-8891.2009.05.006
    [9]MEN Jin-feng, CHENG Hai-feng, CHEN Zhao-hui, WANG Qian. Synthesis and Application to NIR Absorbing Filter for NVIS-compatible Lighting of A Dithiolene Metal Complex NIR Dye without Substituents[J]. Infrared Technology , 2007, 29(5): 302-305. DOI: 10.3969/j.issn.1001-8891.2007.05.013
    [10]GONG Yu-mei, CHEN Mu-wang. Study on One Multipoint Blackbody Temperature Measuring Method Compatible for Multiple Sensors[J]. Infrared Technology , 2006, 28(11): 639-642. DOI: 10.3969/j.issn.1001-8891.2006.11.006
  • Cited by

    Periodical cited type(2)

    1. 张强,客洪亮,郭文斌,曹毅,刘志文,吴松全,李诵斌,李阁平. 高纯锑工业制备技术研究进展. 铜业工程. 2025(01): 27-34 .
    2. 李震,王丹,邢伟荣,王丛,周睿,折伟林. 分子束外延中波/中波双色HgCdTe材料研究. 红外. 2024(09): 1-6 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return