HAN Ziqiang, YUE Mingkai, ZHANG Cong, GAO Qi. Multimodal Fusion Detection of UAV Target Based on Siamese Network[J]. Infrared Technology , 2023, 45(7): 739-745.
Citation: HAN Ziqiang, YUE Mingkai, ZHANG Cong, GAO Qi. Multimodal Fusion Detection of UAV Target Based on Siamese Network[J]. Infrared Technology , 2023, 45(7): 739-745.

Multimodal Fusion Detection of UAV Target Based on Siamese Network

More Information
  • Received Date: May 31, 2023
  • Revised Date: June 20, 2023
  • To address the threat of small drones "black flying" to the public domain. Based on the multimodal image information of an unmanned aerial vehicle (UAV) target, a lightweight multimodal adaptive fusion Siamese network is proposed in this paper. To design a new adaptive fusion strategy, this module assigns different modal weights by defining two model training parameters to achieve adaptive fusion. The structure is reconstructed on the basis of a Ghost PAN, and a pyramid fusion structure more suitable for UAV target detection is constructed. The results of ablation experiments show that each module of the algorithm in this study can improve the detection accuracy of the UAV targets. Multi-algorithm comparison experiments demonstrated the robustness of the algorithm. The mAP increased by 9% when the detection time was basically unchanged.
  • [1]
    张辰, 赵红颖, 钱旭. 面向无人机影像的目标特征跟踪方法研究[J]. 红外技术, 2015, 37(3): 224-228, 239. http://hwjs.nvir.cn/article/id/hwjs201503010

    ZHANG Chen, ZHAO Hongying, QIAN Xu. Research on Target Feature Tracking Method for UAV Images[J]. Infrared Technology, 2015, 37(3): 224-228, 239. http://hwjs.nvir.cn/article/id/hwjs201503010
    [2]
    王宁, 李哲, 梁晓龙, 等. 无人机单载荷目标检测及定位联合实现方法[J]. 电光与控制, 2021, 28(11): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ202111021.htm

    WANG Ning, LI Zhe, LIANG Xiaolong, et al. Joint realization method of single payload target detection and positioning of UAV[J]. Electro-optic and Control, 2021, 28(11): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ202111021.htm
    [3]
    杨欣, 王刚, 李椋, 等. 基于深度卷积神经网络的小型民用无人机检测研究进展[J]. 红外技术, 2022, 44(11): 1119-1131. http://hwjs.nvir.cn/article/id/f016be54-e981-4314-b634-7c05912eb61e

    YANG Xin, WANG Gang, LI Liang, et al. Research progress in detection of small civilian UAVs based on deep convolutional neural networks [J]. Infrared Technology, 2022, 44(11): 1119-1131. http://hwjs.nvir.cn/article/id/f016be54-e981-4314-b634-7c05912eb61e
    [4]
    粟宇路, 苏俊波, 范益红, 等. 红外中长波图像彩色融合方法研究[J]. 红外技术, 2019, 41(4): 335-340. http://hwjs.nvir.cn/article/id/hwjs201904007

    SU Yulu, SU Junbo, FAN Yihong, et al. Research on color fusion method of infrared medium and long wave images [J]. Infrared Technology, 2019, 41(4): 335-340. http://hwjs.nvir.cn/article/id/hwjs201904007
    [5]
    陈旭, 彭冬亮, 谷雨. 基于改进YOLOv5s的无人机图像实时目标检测[J]. 光电工程, 2022, 49(3): 69-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202203006.htm

    CHEN Xu, PENG Dongliang, GU Yu. Real-time target detection of UAV images based on improved YOLOv5s [J]. Optoelectronic Engineering, 2022, 49(3): 69-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202203006.htm
    [6]
    Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 6517-6525.
    [7]
    Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[J/OL]. Computer Vision and Pattern Recognition, 2016. https://arxiv.org/abs/1606.09549
    [8]
    闫号, 戴佳佳, 龚小溪, 等. 基于多源图像融合的光伏面板缺陷检测[J]. 红外技术, 2023, 45(5): 488-497. http://hwjs.nvir.cn/article/id/9de7d764-d0af-4af8-9eb1-a1b94186c243

    YAN Hao, DAI Jiajia, GONG Xiaoxi, et al. Photovoltaic panel defect detection based on multi-source image fusion [J]. Infrared Technology, 2023, 45(5): 488-497. http://hwjs.nvir.cn/article/id/9de7d764-d0af-4af8-9eb1-a1b94186c243
    [9]
    MA Jiayi, MA Yong, LI Chang. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153-178.
    [10]
    白玉, 侯志强, 刘晓义, 等. 基于可见光图像和红外图像决策级融合的目标检测算法[J]. 空军工程大学学报: 自然科学版, 2020, 21(6): 53-59, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC202006009.htm

    BAI Yu, HOU Zhiqiang, LIU Xiaoyi, et al. Target detection algorithm based on decision-level fusion of visible light images and infrared images [J]. Journal of Air Force Engineering University: Natural Science Edition, 2020, 21(6): 53-59, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC202006009.htm
    [11]
    宁大海, 郑晟. 可见光和红外图像决策级融合目标检测算法[J]. 红外技术, 2023, 45(3): 282-291. http://hwjs.nvir.cn/article/id/5340b616-c317-4372-9776-a7c81ca2c729

    NING Dahai, ZHENG Sheng. Decision-level Fusion Object Detection Algorithm for Visible and Infrared Images[J]. Infrared Technology, 2023, 45(3): 282-291. http://hwjs.nvir.cn/article/id/5340b616-c317-4372-9776-a7c81ca2c729
    [12]
    马野, 吴振宇, 姜徐. 基于红外图像与可见光图像特征融合的目标检测算法[J]. 导弹与航天运载技术, 2022(5): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202205016.htm

    MA Ye, WU Zhenyu, JIANG Xu. Target detection algorithm based on feature fusion of infrared image and visible light image [J]. Missile and Space Vehicle Technology, 2022(5): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202205016.htm
    [13]
    刘建华, 尹国富, 黄道杰. 基于特征融合的可见光与红外图像目标检测[J]. 激光与红外, 2023, 53(3): 394-401. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202303010.htm

    LIU Jianhua, YIN Guofu, HUANG Daojie. Object detection in visible and infrared images based on feature fusion [J]. Laser and Infrared, 2023, 53(3): 394-401. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202303010.htm
    [14]
    解宇敏, 张浪文, 余孝源, 等. 可见光-红外特征交互与融合的YOLOv5目标检测算法[J/OL]. 控制理论与应用, http://kns.cnki.net/kcms/detail/44.1240.TP.20230511.1643.024.html.

    XIE Yumin, ZHANG Langwen, YU Xiaoyuan, etc. YOLOv5 target detection algorithm based on interaction and fusion of visible light-infrared features [J/OL]. Control theory and application, http://kns.cnki.net/kcms/detail/44.1240.TP.20230511.1643.024.html.
    [15]
    RangiLyu. NanoDet-Plus: Super fast and high accuracy lightweight anchor-free object detection model[EB/OL]. https://github.com/RangiLyu/nanodet, 2021.
    [16]
    MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131.
    [17]
    LI X, WANG W, WU L, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33: 21002-21012.
    [18]
    JIANG Nan, WANG Kuiran, PENG Xiaoke. Anti-UAV: A Large-Scale Benchmark for Vision-Based UAV Tracking[J]. IEEE Transactions on Multimedia, 2023, 25: 486-500, DOI: 10.1109/TMM.2021.3128047.
    [19]
    ZHAO J, WANG G, LI J, et al. The 2nd Anti-UAV workshop & challenge: Methods and results[J/OL]. arXiv preprint arXiv: 2108.09909, 2021.
    [20]
    LI C, LI L, JIANG H, et al. YOLOv6: A single-stage object detection framework for industrial applications[J/OL]. arXiv preprint arXiv: 2209.02976, 2022.
    [21]
    GE Z, LIU S, WANG F, et al. Yolox: Exceeding yolo series in 2021[J/OL]. arXiv preprint arXiv: 2107.08430, 2021.
    [22]
    Github. Yolov5[EB/OL]. https://github.com/ultralytics/yolov5, 2021.
    [23]
    LI B, XIAO C, WANG L, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing, 2022, 32: 1745-1758.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return