REN Yang, QIN Gang, LI Junbin, YANG Jin, LI Yanhui, YANG Chunzhang, KONG Jincheng. Characterization and Analysis of Interface Characteristics of InAs/GaSb Type-II Superlattice Materials[J]. Infrared Technology , 2022, 44(2): 115-122.
Citation: REN Yang, QIN Gang, LI Junbin, YANG Jin, LI Yanhui, YANG Chunzhang, KONG Jincheng. Characterization and Analysis of Interface Characteristics of InAs/GaSb Type-II Superlattice Materials[J]. Infrared Technology , 2022, 44(2): 115-122.

Characterization and Analysis of Interface Characteristics of InAs/GaSb Type-II Superlattice Materials

More Information
  • Received Date: October 18, 2020
  • Revised Date: January 18, 2022
  • This article systematically introduces the testing and analysis methods used by domestic and foreign research institutions to study the superlattice interface. To evaluate the quality of the superlattice interface, the InAs/GaSb type-II superlattice interface type, interface roughness, abruptness, and other characteristics can be tested and analyzed using Raman spectroscopy, high-resolution transmission electron microscopy, a scanning tunneling microscope, secondary ion mass spectroscopy, and X-ray photoelectron spectroscopy. Photoluminescence spectroscopy, high-resolution X-ray diffraction, Hall measurements, and absorption spectroscopy can be used to study the effect of the superlattice interface quality on the energy band, crystal quality, and optical properties of superlattice materials.
  • [1]
    Chang L L, Saihalasz G A, Esaki L, et al. Spatial separation of carriers in InAs-GaSb superlattices[J]. Journal of Vacuum Science and Technology, 1981, 19(3): 589-591. DOI: 10.1116/1.571134
    [2]
    Brum J A, Voisin P, Bastard G, et al. Transient photovoltaic effect in semiconductor superlattices[J]. Physical Review B, 1986, 33(2): 1063-1066. DOI: 10.1103/PhysRevB.33.1063
    [3]
    Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors[J]. Journal of Applied Physics, 1987, 62(6): 2545-2548. DOI: 10.1063/1.339468
    [4]
    Hood A, Hoffman D, WEI Y, et al. Capacitance-voltage investigation of high-purity InAs/GaSb superlattice photodiodes[J]. Applied Physics Letters, 2006, 88(5): 052112. DOI: 10.1063/1.2172399
    [5]
    Hoffman D, Gin A, Wei Y, et al. Negative and positive luminescence in midwavelength infrared InAs-GaSb superlattice photodiodes[J]. IEEE Journal of Quantum Electronics, 2005, 41(12): 1474-1479. DOI: 10.1109/JQE.2005.858783
    [6]
    Szmulowicz F, Haugan H J, Brown G J, et al. Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors[J]. Opto-electronics Review, 2006, 14(1): 69-75.
    [7]
    Christol P, Konczewicz L, Cuminal Y, et al. Electrical properties of short period InAs/GaSb superlattice[J]. Physica Status Solidi(c), 2007, 4(4): 1494-1498.
    [8]
    Nesher O, Klipstein P C. High-performance IR detectors at SCD present and future[J]. Opto-electronics Review, 2006, 14(1): 59-68.
    [9]
    Szmulowicz F, Haugan H J, Brown G J, et al. Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors [J]. Opto-Electronics Review, 2006, 14(1): 69-75.
    [10]
    WEI Y J, Razeghi M. Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering[J]. Physical Review B, 2004, 69(8): 085316. DOI: 10.1103/PhysRevB.69.085316
    [11]
    Luna E, Satpati B, Rodriguez J B, et al. Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 2010, 96(2): 021904. DOI: 10.1063/1.3291666
    [12]
    Sarusi G. QWIP or other alternative for third generation infrared systems[J]. Infrared Physics & Technology, 2003, 44(5): 439-444.
    [13]
    Thibado P M, Bennett B R, Twigg M E, et al. Origins of interfacial disorder in GaSb/InAs superlattices[J]. Applied Physics Letters, 1995, 67(24): 3578-3580. DOI: 10.1063/1.115323
    [14]
    Tahraoui A, Tomasini P, Lassabatere L, et al. Growth and optimization of InAs/GaSb and GaSb/InAs interfaces[J]. Applied Surface Science, 2000, 162: 425-429.
    [15]
    Schmitz J, Wagner J, Fuchs F, et al. Optical and structural investigations of intermixing reactions at the interfaces of InAs/AlSb and InAs/GaSb quantum wells grown by molecularbeam epitaxy[J]. Journal of Crystal Growth, 1995, 150: 858-862. DOI: 10.1016/0022-0248(95)80061-G
    [16]
    Wagner J, Schmitz J, Herres N, et al. InAs/(GaIn)Sb superlattices for IR optoelectronics: strain optimization by controlled interface formation[J]. Physica E-low-dimensional Systems & Nanostructures, 1998, 2(1): 320-324.
    [17]
    Satpati B, Rodriguez J B, Trampert A, et al. Interface analysis of InAs/GaSb superlattice grown by MBE[J]. Journal of Crystal Growth, 2007, 301: 889-892.
    [18]
    Twigg M E, Bennett B R. Influence of interface and buffer layer on the structure of InAs/GaSb superlattices[J]. Applied Physics Letters, 1995, 67(11): 1609-1611. DOI: 10.1063/1.114955
    [19]
    Kaspi R, Steinshnider J, Weimer M. As-soak control of the InAs -on-GaSb interface[J]. Journal of Crystal Growth, 2001, 225(2/4): 544-549.
    [20]
    Jackson E M, Boishin G I, Aifer E H, et al. Arsenic cross-contamination in GaSb/InAs superlattices[J]. Journal of Crystal Growth, 2004, 270(3): 301-308.
    [21]
    Zborowski J T, Vigliante A, Moss S C, et al. Interface properties of(In, Ga)Sb/InAs heterostructures[J]. Journal of Applied Physics, 1996, 79(11): 8379-8383. DOI: 10.1063/1.362557
    [22]
    WANG M W. Study of interface asymmetry in InAs-GaSb hetero- junctions[J]. Journal of Vacuum Science & Technology B, 1995, 13(4): 1689-1693.
    [23]
    Booker G R, Klipstein P C, Lakrimi M, et al. Growth of InAs/GaSb strained layer superlattices II[J]. Journal of Crystal Growth, 1995, 146(1-4): 495-502. DOI: 10.1016/0022-0248(94)00536-2
    [24]
    Daly M S, Symons D M, Lakrimi M, et al. Interface composition dependence of the band offset in InAs/GaSb[J]. Semiconductor Science and Technology, 1996, 11(5): L823. DOI: 10.1088/0268-1242/11/5/001
    [25]
    Young M H, Chow D H, Hunter A T, et al. Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials[J]. Applied Surface Science, 1998, 123-124: 395-399. DOI: 10.1016/S0169-4332(97)00490-X
    [26]
    Bennett B R, Shanabrook B V, Wagner R J, et al. Interface composition control in InAs/GaSb superlattices[J]. Solid-state Electronics, 1994, 37(4-6): 733-737. DOI: 10.1016/0038-1101(94)90288-7
    [27]
    Chow D H, Miles R H, Hunter A T, et al. Effects of interface stoichiometry on the structural and electronic properties of Ga1−x InxSb/InAs superlattices[J]. Journal of Vacuum Science & Technology B, 1992, 10(2): 888-891.
    [28]
    邱永鑫. InAs/GaSb超晶格界面微观结构研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    QIU Yongxin. Study on Interface Microstructure of InAs/GaSb Super- lattice[D]. Harbin: Harbin Institute of Technology, 2008.
    [29]
    Rodriguez J B, Christol P, Cerutti L, et al. MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection[J]. Journal of Crystal Growth, 2005, 274(1): 6-13.
    [30]
    Jasik A, Sankowska I, Pierścinska D, et al. Blueshift of bandgap energy and reduction of non-radiative defect density due to precise control of InAs-on-GaSb interface in type-II InAs/GaSb superlattice[J]. Journal of Applied Physics, 2011, 110(12): 123103. DOI: 10.1063/1.3671024
    [31]
    Omaggio J P, Meyer J R, Wagner R J, et al. Determination of band gap and effective masses in InAs/Ga1−xInxSb superlattices[J]. Applied Physics Letters, 1992, 61(2): 207-209. DOI: 10.1063/1.108219
    [32]
    WANG M W, Collins D A, Mcgill T C, et al. Effect of interface composition and growth order on the mixed anion InAs/GaSb valence band offset[J]. Applied Physics Letters, 1995, 66(22): 2981-2983. DOI: 10.1063/1.114250
    [33]
    Haugan H J, Brown G J, Grazulis L, et al. Optimization of InAs/GaSb type-II superlattices for high performance of photodetectors[J]. Physica E: Low-dimensional Systems and Nanostructures, 2004, 20(3-4): 527-530. DOI: 10.1016/j.physe.2003.09.003
    [34]
    Haugan H J, Elhamri S, Brown G J, et al. Growth optimization for low residual carriers in undoped midinfrared InAs/GaSb superlattices[J]. Journal of Applied Physics, 2008, 104(7): 240.
    [35]
    Szmulowicz F, Haugan H J, Brown G J, et al. Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation[J]. Physical Review B, 2004, 69(15): 155321. DOI: 10.1103/PhysRevB.69.155321
  • Related Articles

    [1]WANG Yefei, CHENG Yanping, YAO Yuan, LI Daojing, YU Xiao. Design of Membrane Diffractive Athermal Infrared Optical System[J]. Infrared Technology , 2021, 43(5): 422-428.
    [2]LI Shenghui, LI Xin, LI Hongjing. Design of Infrared Dual-Band Common Aperture Thermal Elimination Optical System Based on Harmonic Diffraction[J]. Infrared Technology , 2020, 42(1): 19-24.
    [3]HE Lei, ZHANG Jianlong, YANG Zhen, GUO Xinmin. Design of a Small Rolling-pitching Long-wave Infrared Optical System[J]. Infrared Technology , 2018, 40(12): 1142-1148.
    [4]LI Ruiyao, FU Yuegang, LIU Zhiying. Athermalization Design of Compact Medium-wave Infrared Imaging System[J]. Infrared Technology , 2018, 40(2): 119-124.
    [6]WU Guo-jun, BAI Ting-zhu, BAI Fu-ning. Research on Infrared Images Simulation by Inversing the Scene of the Visible Light Images[J]. Infrared Technology , 2011, 33(10): 574-579. DOI: 10.3969/j.issn.1001-8891.2011.10.004
    [7]WU Chun, LIU Xiang-xuan, WU You-peng. Study on the Preparation and Properties of Visible Light and Heat Infrared Camouflage Composite Materials[J]. Infrared Technology , 2009, 31(10): 602-606. DOI: 10.3969/j.issn.1001-8891.2009.10.011
    [8]BAI Yun, YANG Jian-feng, MA Xiao-long, XUE Bin, RUAN Ping, TIAN Hai-xia, WANG Hong-wei, LIANG Shi-tong, LI Xiang-juan. Athermalization of Long-wavelength Infrared Optical System[J]. Infrared Technology , 2008, 30(10): 583-585. DOI: 10.3969/j.issn.1001-8891.2008.10.007
    [9]CHEN Lv-ji, FENG Sheng-rong. A Compact Athermalizing Infrared Optical System[J]. Infrared Technology , 2007, 29(4): 203-205. DOI: 10.3969/j.issn.1001-8891.2007.04.004
    [10]MING Jing-qian, JIN Ning, GUO Lan, FENG Sheng-rong. An Athermal Design of Infrared Hybrid Refractive/Diffractive Optical System in 7.5~10.5μm Spectrum[J]. Infrared Technology , 2006, 28(5): 261-265. DOI: 10.3969/j.issn.1001-8891.2006.05.004
  • Cited by

    Periodical cited type(1)

    1. 周佳乐,宋敏敏,雷昊,刘建旭,曹卫卫,施瑶瑶,董大兴,刘友文. 基于YOLO与图像修复的仿真场景等效构设研究. 激光与红外. 2025(01): 145-154 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return