Citation: | REN Yang, QIN Gang, LI Junbin, YANG Jin, LI Yanhui, YANG Chunzhang, KONG Jincheng. Characterization and Analysis of Interface Characteristics of InAs/GaSb Type-II Superlattice Materials[J]. Infrared Technology , 2022, 44(2): 115-122. |
[1] |
Chang L L, Saihalasz G A, Esaki L, et al. Spatial separation of carriers in InAs-GaSb superlattices[J]. Journal of Vacuum Science and Technology, 1981, 19(3): 589-591. DOI: 10.1116/1.571134
|
[2] |
Brum J A, Voisin P, Bastard G, et al. Transient photovoltaic effect in semiconductor superlattices[J]. Physical Review B, 1986, 33(2): 1063-1066. DOI: 10.1103/PhysRevB.33.1063
|
[3] |
Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors[J]. Journal of Applied Physics, 1987, 62(6): 2545-2548. DOI: 10.1063/1.339468
|
[4] |
Hood A, Hoffman D, WEI Y, et al. Capacitance-voltage investigation of high-purity InAs/GaSb superlattice photodiodes[J]. Applied Physics Letters, 2006, 88(5): 052112. DOI: 10.1063/1.2172399
|
[5] |
Hoffman D, Gin A, Wei Y, et al. Negative and positive luminescence in midwavelength infrared InAs-GaSb superlattice photodiodes[J]. IEEE Journal of Quantum Electronics, 2005, 41(12): 1474-1479. DOI: 10.1109/JQE.2005.858783
|
[6] |
Szmulowicz F, Haugan H J, Brown G J, et al. Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors[J]. Opto-electronics Review, 2006, 14(1): 69-75.
|
[7] |
Christol P, Konczewicz L, Cuminal Y, et al. Electrical properties of short period InAs/GaSb superlattice[J]. Physica Status Solidi(c), 2007, 4(4): 1494-1498.
|
[8] |
Nesher O, Klipstein P C. High-performance IR detectors at SCD present and future[J]. Opto-electronics Review, 2006, 14(1): 59-68.
|
[9] |
Szmulowicz F, Haugan H J, Brown G J, et al. Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors [J]. Opto-Electronics Review, 2006, 14(1): 69-75.
|
[10] |
WEI Y J, Razeghi M. Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering[J]. Physical Review B, 2004, 69(8): 085316. DOI: 10.1103/PhysRevB.69.085316
|
[11] |
Luna E, Satpati B, Rodriguez J B, et al. Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 2010, 96(2): 021904. DOI: 10.1063/1.3291666
|
[12] |
Sarusi G. QWIP or other alternative for third generation infrared systems[J]. Infrared Physics & Technology, 2003, 44(5): 439-444.
|
[13] |
Thibado P M, Bennett B R, Twigg M E, et al. Origins of interfacial disorder in GaSb/InAs superlattices[J]. Applied Physics Letters, 1995, 67(24): 3578-3580. DOI: 10.1063/1.115323
|
[14] |
Tahraoui A, Tomasini P, Lassabatere L, et al. Growth and optimization of InAs/GaSb and GaSb/InAs interfaces[J]. Applied Surface Science, 2000, 162: 425-429.
|
[15] |
Schmitz J, Wagner J, Fuchs F, et al. Optical and structural investigations of intermixing reactions at the interfaces of InAs/AlSb and InAs/GaSb quantum wells grown by molecularbeam epitaxy[J]. Journal of Crystal Growth, 1995, 150: 858-862. DOI: 10.1016/0022-0248(95)80061-G
|
[16] |
Wagner J, Schmitz J, Herres N, et al. InAs/(GaIn)Sb superlattices for IR optoelectronics: strain optimization by controlled interface formation[J]. Physica E-low-dimensional Systems & Nanostructures, 1998, 2(1): 320-324.
|
[17] |
Satpati B, Rodriguez J B, Trampert A, et al. Interface analysis of InAs/GaSb superlattice grown by MBE[J]. Journal of Crystal Growth, 2007, 301: 889-892.
|
[18] |
Twigg M E, Bennett B R. Influence of interface and buffer layer on the structure of InAs/GaSb superlattices[J]. Applied Physics Letters, 1995, 67(11): 1609-1611. DOI: 10.1063/1.114955
|
[19] |
Kaspi R, Steinshnider J, Weimer M. As-soak control of the InAs -on-GaSb interface[J]. Journal of Crystal Growth, 2001, 225(2/4): 544-549.
|
[20] |
Jackson E M, Boishin G I, Aifer E H, et al. Arsenic cross-contamination in GaSb/InAs superlattices[J]. Journal of Crystal Growth, 2004, 270(3): 301-308.
|
[21] |
Zborowski J T, Vigliante A, Moss S C, et al. Interface properties of(In, Ga)Sb/InAs heterostructures[J]. Journal of Applied Physics, 1996, 79(11): 8379-8383. DOI: 10.1063/1.362557
|
[22] |
WANG M W. Study of interface asymmetry in InAs-GaSb hetero- junctions[J]. Journal of Vacuum Science & Technology B, 1995, 13(4): 1689-1693.
|
[23] |
Booker G R, Klipstein P C, Lakrimi M, et al. Growth of InAs/GaSb strained layer superlattices II[J]. Journal of Crystal Growth, 1995, 146(1-4): 495-502. DOI: 10.1016/0022-0248(94)00536-2
|
[24] |
Daly M S, Symons D M, Lakrimi M, et al. Interface composition dependence of the band offset in InAs/GaSb[J]. Semiconductor Science and Technology, 1996, 11(5): L823. DOI: 10.1088/0268-1242/11/5/001
|
[25] |
Young M H, Chow D H, Hunter A T, et al. Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials[J]. Applied Surface Science, 1998, 123-124: 395-399. DOI: 10.1016/S0169-4332(97)00490-X
|
[26] |
Bennett B R, Shanabrook B V, Wagner R J, et al. Interface composition control in InAs/GaSb superlattices[J]. Solid-state Electronics, 1994, 37(4-6): 733-737. DOI: 10.1016/0038-1101(94)90288-7
|
[27] |
Chow D H, Miles R H, Hunter A T, et al. Effects of interface stoichiometry on the structural and electronic properties of Ga1−x InxSb/InAs superlattices[J]. Journal of Vacuum Science & Technology B, 1992, 10(2): 888-891.
|
[28] |
邱永鑫. InAs/GaSb超晶格界面微观结构研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
QIU Yongxin. Study on Interface Microstructure of InAs/GaSb Super- lattice[D]. Harbin: Harbin Institute of Technology, 2008.
|
[29] |
Rodriguez J B, Christol P, Cerutti L, et al. MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection[J]. Journal of Crystal Growth, 2005, 274(1): 6-13.
|
[30] |
Jasik A, Sankowska I, Pierścinska D, et al. Blueshift of bandgap energy and reduction of non-radiative defect density due to precise control of InAs-on-GaSb interface in type-II InAs/GaSb superlattice[J]. Journal of Applied Physics, 2011, 110(12): 123103. DOI: 10.1063/1.3671024
|
[31] |
Omaggio J P, Meyer J R, Wagner R J, et al. Determination of band gap and effective masses in InAs/Ga1−xInxSb superlattices[J]. Applied Physics Letters, 1992, 61(2): 207-209. DOI: 10.1063/1.108219
|
[32] |
WANG M W, Collins D A, Mcgill T C, et al. Effect of interface composition and growth order on the mixed anion InAs/GaSb valence band offset[J]. Applied Physics Letters, 1995, 66(22): 2981-2983. DOI: 10.1063/1.114250
|
[33] |
Haugan H J, Brown G J, Grazulis L, et al. Optimization of InAs/GaSb type-II superlattices for high performance of photodetectors[J]. Physica E: Low-dimensional Systems and Nanostructures, 2004, 20(3-4): 527-530. DOI: 10.1016/j.physe.2003.09.003
|
[34] |
Haugan H J, Elhamri S, Brown G J, et al. Growth optimization for low residual carriers in undoped midinfrared InAs/GaSb superlattices[J]. Journal of Applied Physics, 2008, 104(7): 240.
|
[35] |
Szmulowicz F, Haugan H J, Brown G J, et al. Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation[J]. Physical Review B, 2004, 69(15): 155321. DOI: 10.1103/PhysRevB.69.155321
|
[1] | REN Yang, LI Junbin, QIN Gang, YANG Jin, LI Yanhui, ZHOU Xuchang, YANG Chunzhang, CHANG Chao, KONG Jincheng, LI Dongsheng. Analysis of Interface Control Methods for InAs/GaSb Type-Ⅱ Superlattice Materials Grown by MBE[J]. Infrared Technology , 2021, 43(4): 301-311. |
[2] | Comparison of NEA GaN and GaAs Photocathodes[J]. Infrared Technology , 2017, 39(12): 1073-1077. |
[3] | NIU Jun, WANG Ping, QIAN Yun-Sheng, CHANG Ben-kang. Characterization of the Absorption Coefficient of Varied Doped GaAs Photocathodes[J]. Infrared Technology , 2014, (7): 592-595. |
[4] | LI Xiao-feng, SHI Feng, FENG Liu. Study on Fluorescence of Transparent GaAs Cathode[J]. Infrared Technology , 2013, (6): 319-324. |
[5] | YU Li-jing, LI Yan-dong, XIN Si-shu, GUO Yu-hang, YANG Wen-yun. Interface Properties of Anodized InSb[J]. Infrared Technology , 2012, 34(4): 191-195. DOI: 10.3969/j.issn.1001-8891.2012.04.002 |
[6] | GAO Pin, ZHANG Yi-jun. Comparison of Spectral Characteristics on Different Reflection-Mode GaAs Photocathodes[J]. Infrared Technology , 2011, 33(7): 429-432. DOI: 10.3969/j.issn.1001-8891.2011.07.012 |
[7] | XIAO Yun-Chao, GUO Fang-Min. Optical Charge Memory of the GaAs/InGaAs Quantum Dot Well Diode[J]. Infrared Technology , 2011, 33(5): 281-283. DOI: 10.3969/j.issn.1001-8891.2011.05.008 |
[8] | GUO Xiang-yang, CHANG Ben-kang, QIAO Jian-liang, WANG Xiao-hui. Comparison of Stability of GaN and GaAs Photocathode[J]. Infrared Technology , 2010, 32(2): 117-120. DOI: 10.3969/j.issn.1001-8891.2010.02.014 |
[9] | DU Yu-jie, DU Xiao-qing, CHANG Ben-kang. Compare and Analysis of Spectral Response Characteristics of Foreign GaAs Photocathodes[J]. Infrared Technology , 2005, 27(3): 254-256. DOI: 10.3969/j.issn.1001-8891.2005.03.017 |
[10] | Automatic Measurement System of Characterization of GaAs/AlGaAs QWIP[J]. Infrared Technology , 2001, 23(2): 8-10,16. DOI: 10.3969/j.issn.1001-8891.2001.02.003 |
1. |
赵志燊,赵杰,余磊. 色谱理论课程教学与应用实例解析. 贵阳学院学报(自然科学版). 2023(04): 83-87 .
![]() |