Citation: | GAO Yubao, JIANG Tao, HU Xiaocheng, JIANG Qiong, YANG Changchun, LIU Zeliang, QI Shikai. Method of High Precision Medical Infrared Thermography[J]. Infrared Technology , 2020, 42(11): 1111-1118. |
[1] |
Bhowmik M K, Gogoi U R, Majumdar G, et al. Designing of Ground-Truth-Annotated DBT-TU-JU Breast Thermogram Database Toward Early Abnormality Prediction[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22: 1238-1249. DOI: 10.1109/JBHI.2017.2740500
|
[2] |
De Santana M A, Pereira J M S, Da Silva F L, et al. Breast cancer diagnosis based on mammary thermography and extreme learning machines[J]. Research on Biomedical Engineering, 2018, 34: 45-53. DOI: 10.1590/2446-4740.05217
|
[3] |
Dua G, Mulaveesala R. Applicability of active infrared thermography for screening of human breast: a numerical study[J]. Journal of Biomedical Optics, 2018, 23: 9. https://www.ncbi.nlm.nih.gov/pubmed/29560626
|
[4] |
Mambou S J, Maresova P, Krejcar O, et al. Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model[J]. Sensors, 2018, 18: 19.
|
[5] |
Morales-Cervantes A, Kolosovas-Machuca E S, Guevara E, et al. an Automated Method for the Evaluation of Breast Cancer Using Infrared Thermography[J]. Excli Journal, 2018, 17: 989-998. https://www.ncbi.nlm.nih.gov/pubmed/30564079
|
[6] |
Santana M A d, Pereira J M S, Silva F L d, et al. Breast cancer diagnosis based on mammary thermography and extreme learning machines[J]. Research on Biomedical Engineering, 2018, 34: 45-53. DOI: 10.1590/2446-4740.05217
|
[7] |
Wahab A A, Salim M I M, Yunus J, et al. Comparative evaluation of medical thermal image enhancement techniques for breast cancer detection[J]. Journal of Engineering and Technological Sciences, 2018, 50: 40-52. DOI: 10.5614/j.eng.technol.sci.2018.50.1.3
|
[8] |
Abdel-Nasser M, Moreno A, Puig D. Breast Cancer Detection in Thermal Infrared Images Using Representation Learning and Texture Analysis Methods[J]. Electronics, 2019, 8: 18. http://www.researchgate.net/publication/330412196_Breast_Cancer_Detection_in_Thermal_Infrared_Images_Using_Representation_Learning_and_Texture_Analysis_Methods
|
[9] |
Singh D, Singh A K. Role of image thermography in early breast cancer detection- Past, present and future[J]. Computer Methods and Programs in Biomedicine, 2020, 183: 61-69. https://www.sciencedirect.com/science/article/pii/S0169260719311277
|
[10] |
Fokam D, Lehmann C. Clinical assessment of arthritic knee pain by infrared thermography[J]. Journal of basic and clinical physiology and pharmacology, 2018, 30: 21-25. http://www.ncbi.nlm.nih.gov/pubmed/30375348
|
[11] |
Pauk J, Wasilewska A, Ihnatouski M. Infrared thermography sensor for disease activity detection in Rheumatoid arthritis patients[J]. Sensors (Switzerland), 2019, 19: 34-48. https://www.mdpi.com/1424-8220/19/16/3444/pdf
|
[12] |
Pauk J, Ihnatouski M, Wasilewska A. Detection of inflammation from finger temperature profile in rheumatoid arthritis[J]. Medical & Biological Engineering & Computing, 2019, 57: 2629-2639. DOI: 10.1007/s11517-019-02055-1.pdf
|
[13] |
Gatt A, Mercieca C, Borg A, et al. A comparison of thermographic characteristics of the hands and wrists of rheumatoid arthritis patients and healthy controls[J]. Scientific Reports, 2019, 9: 172-180. DOI: 10.1038/s41598-018-36890-3
|
[14] |
Haq T, Crane J D, Kanji S, et al. Optimizing the methodology for measuring supraclavicular skin temperature using infrared thermography; implications for measuring brown adipose tissue activity in humans[J]. Scientific Reports, 2017, 7: 9. DOI: 10.1038/s41598-017-00053-7
|
[15] |
Jimenez-Pavon D, Corral-Perez J, Sanchez-Infantes D, et al. Infrared Thermography for Estimating Supraclavicular Skin Temperature and BAT Activity in Humans: A Systematic Review[J]. Obesity, 2019, 27: 1932-1949. DOI: 10.1002/oby.22635
|
[16] |
LIN P H, Echeverria A, Poi M J. Infrared thermography in the diagnosis and management of vasculitis[J]. Journal of vascular surgery cases and innovative techniques, 2017, 3: 112-114. DOI: 10.1016/j.jvscit.2016.12.002
|
[17] |
Gauci J, Falzon O, Formosa C, et al. Automated Region Extraction from Thermal Images for Peripheral Vascular Disease Monitoring[J]. Journal of Healthcare Engineering, 2018, 2018: 14. https://www.hindawi.com/journals/jhe/2018/5092064/
|
[18] |
Carriere M E, de Haas L E M, Pijpe A, et al. Validity of thermography for measuring burn wound healing potential[J]. Wound Repair and Regeneration, 2019, 10: 1-8. https://pubmed.ncbi.nlm.nih.gov/31777128/
|
[19] |
Knobel-Dail R B, Holditch-Davis D, Sloane R, et al. Body temperature in premature infants during the first week of life: Exploration using infrared thermal imaging[J]. Journal of Thermal Biology, 2017, 69: 118-123. DOI: 10.1016/j.jtherbio.2017.06.005
|
[20] |
Topalidou A, Ali N, Sekulic S, et al. Thermal imaging applications in neonatal care: a scoping review[J]. Bmc Pregnancy and Childbirth, 2019, 19: 14. DOI: 10.1186/s12884-018-2132-3
|
[21] |
Pereira T, Nogueira-Silva C, Simoes R. Normal range and lateral symmetry in the skin temperature profile of pregnant women[J]. Infrared Physics & Technology, 2016, 78: 84-91. https://www.sciencedirect.com/science/article/pii/S1350449516302067
|
[22] |
Martini G, Cappella M, Culpo R, et al. Infrared thermography in children: a reliable tool for differential diagnosis of peripheral microvascular dysfunction and Raynaud's phenomenon?[J]. Pediatric Rheumatology, 2019, 17: 9. DOI: 10.1186/s12969-019-0307-8
|
[23] |
Garcia-Porta N, Gantes-Nunez F J, Tabernero J, et al. Characterization of the ocular surface temperature dynamics in glaucoma subjects using long-wave infrared thermal imaging[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 2019, 36: 1015-1021. DOI: 10.1364/JOSAA.36.001015
|
[24] |
Debiec-Bak A, Wojtowicz D, Pawik L, et al. Analysis of body surface temperatures in people with Down syndrome after general rehabilitation exercise[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135: 2399-2410. DOI: 10.1007/s10973-018-7345-1
|
[25] |
Hernandez-Contreras D A, Peregrina-Barreto H, Rangel-Magdaleno J D, et al. Plantar Thermogram Database for the Study of Diabetic Foot Complications[J]. IEEE Access, 2019, 7: 161296-161307. DOI: 10.1109/ACCESS.2019.2951356
|
[26] |
丁德红. 16位高精度在线式红外热像仪的技术方案与实现[J].红外技术, 2017, 39(9): 841-847. http://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201709011.htm
Dehong D. Online Temperature Measurement Technology Solutions and Implementationof 16 bit Infrared Thermal Imager[J]. Infrared Technology, 2017, 39(9): 841-847. http://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201709011.htm
|
[27] |
Tan J H, Acharya U R. Pseudocolours for thermography-Multi-segments colour scale[J]. Infrared Physics & Technology, 2015, 72: 140-147. https://www.sciencedirect.com/science/article/pii/S1350449515001875
|
[28] |
Kermani S, Samadzadehaghdam N, EtehadTavakol M. Automatic color segmentation of breast infrared images using a Gaussian mixture model[J]. Optik, 2015, 126: 3288-3294. DOI: 10.1016/j.ijleo.2015.08.007
|
[29] |
LI T J, WANG Y Y, CHANG C, et al. Color-appearance-model based fusion of gray and pseudo-color images for medical applications[J]. Information Fusion, 2014, 19: 103-114. DOI: 10.1016/j.inffus.2012.07.002
|
[1] | DENG Wenbin, SONG Linwei, KONG Jincheng, JIANG Jun, YANG Jin, QI Wenbin, WAN Zhiyuan, LIU Yan, RONG Huiyu, XU Jiangming, YANG Xiang, ZHU Xun, ZHENG Yaozheng, JI Rongbin. Progress in LPE Growth of HgCdTe Film at 100 mm×100 mm[J]. Infrared Technology , 2024, 46(10): 1172-1177. |
[2] | WANG Wenjin, KONG Jincheng, QI Wenbin, ZHANG Yang, SONG Linwei, WU Jun, ZHAO Wen, YU Jianyun, QIN Gang. Research Progress on Materials and Devices of HgCdTe p-on-n Double Layer Heterojunction Grown by VLPE[J]. Infrared Technology , 2024, 46(3): 233-245. |
[3] | YANG Jin, LI Yanhui, YANG Chunzhang, QIN Gang, LI Junbin, LEI Wen, KONG Jincheng, ZHAO Jun, JI Rongbin. Research Progress of Dislocation Density Reduction in MBE HgCdTe on Alternative Substrates[J]. Infrared Technology , 2022, 44(8): 828-836. |
[4] | QIN Gang, LI Dong-sheng. The As-doping Technique of HgCdTe Thin Film by MBE[J]. Infrared Technology , 2015, (10): 858-863. |
[5] | ZHOU Lian-jun, WANG Jing-yu, TIAN Li-ping, REN Hua, YUAN Shou-zhang, LI Dong-sheng, SHU Chang, WANG Xiao-juan, XIE Gang, ZHOU Jia-ding. Study on Chemical Etching of LPE HgCdTe Surface[J]. Infrared Technology , 2015, (6): 506-509,522. |
[6] | QIN Gang, LI Dong-sheng, LI Yan-hui, YANG Chun-zhang, ZHOU Xu-chang, ZHANG Yang, TAN Ying, ZUO Da-fan, QI Hang. Research on In-situ As-doped HgCdTe Thin Film Growth on Ge-base by MBE[J]. Infrared Technology , 2015, (2): 105-109. |
[7] | WU Jun, MAO Xu-feng, WAN Zhi-yuan, LI Pei, HAN Fu-zhong. Improvement of Compositional Uniformity of HgCdTe Grown by LPE[J]. Infrared Technology , 2014, (12): 973-975. |
[8] | Developments of Mercury Cadmium Telluride in Recent Years[J]. Infrared Technology , 2009, 31(8): 435-442. DOI: 10.3969/j.issn.1001-8891.2009.08.001 |
[10] | The Surface Passivation of MCT Infrared Detectors[J]. Infrared Technology , 2001, 23(3): 9-12,15. DOI: 10.3969/j.issn.1001-8891.2001.03.003 |