YANG Jin, LI Yanhui, YANG Chunzhang, QIN Gang, LI Junbin, LEI Wen, KONG Jincheng, ZHAO Jun, JI Rongbin. Research Progress of Dislocation Density Reduction in MBE HgCdTe on Alternative Substrates[J]. Infrared Technology , 2022, 44(8): 828-836.
Citation: YANG Jin, LI Yanhui, YANG Chunzhang, QIN Gang, LI Junbin, LEI Wen, KONG Jincheng, ZHAO Jun, JI Rongbin. Research Progress of Dislocation Density Reduction in MBE HgCdTe on Alternative Substrates[J]. Infrared Technology , 2022, 44(8): 828-836.

Research Progress of Dislocation Density Reduction in MBE HgCdTe on Alternative Substrates

More Information
  • Received Date: March 09, 2021
  • Revised Date: April 15, 2021
  • HgCdTe has dominated the high-performance IR detector market for decades. Owing to its numerous merits, including precise energy band structure control and device structure growth, the MBE(molecular beam epitaxy) growth of HgCdTe has become the main tool for fabricating third-generation IR focal plane arrays. CdZnTe is widely considered to be an ideal substrate for HgCdTe epitaxy because of the matched lattice through Zn fraction adjustment. Therefore, HgCdTe/CdZnTe has a high crystal quality with a typical etch pit density in the range of 1×104–1×105 cm-2. However, several limitations, such as high cost, small wafer size, and low yield, still exist in the (211) CdZnTe substrate, which results in high cost and limits the array format size in infrared detectors based on HgCdTe/CdZnTe. Compared with CdZnTe substrates, alternative substrates (e.g., Si, Ge, GaAs, and GaSb) have large wafer size, low cost, and convenience in standard semiconductor equipment, which have the potential to fabricate low-cost high-performance focal plane arrays. The main issue in HgCdTe on alternative substrates is the large lattice mismatch between the substrate and epi-layer (19.3%, 14.3%, 14.4%, and 6.1% for Si, Ge, GaAs, and GaSb, respectively), which is responsible for the high dislocation density of 106–107 cm-2 in HgCdTe films. The high dislocation density hampers the application of this material to long-wavelength and very long-wavelength infrared detectors.The variation in dislocation density with film thickness in the as-grown HgCdTe film grown on an alternative substrate was modeled, and the results from the ρ~1/h law agreed well with the experimental data. This indicates that the dislocation annihilation radius is the leading cause of impeding the dislocation density below 5×106 cm-2 in HgCdTe; thus, dislocation reduction is urgently needed. Moreover, the theory and research progress on three dislocation reduction methods, namely thermal cycle annealing (TCA), dislocation blocking, and mesa dislocation gettering (MDG), are summarized in this paper. Prospects and priorities for future development are also discussed. Overall, TCA and dislocation blocking techniques are likely to be harder in technical breakthroughs and have less development potential in dislocation reduction to below 5× 105 cm-2. By contrast, the MDG technique has shown tremendous development potential and high value in low-cost long-wavelength infrared detectors; however, process integration between the MDG technique and standard focal plane array fabrication is needed.
  • [1]
    LEI W, Antoszewski J, Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors[J]. Applied Physics Reviews, 2015, 2(4): 041303. DOI: 10.1063/1.4936577
    [2]
    Kinch M A. The future of infrared; III–Vs or HgCdTe?[J]. Journal of Electronic Materials, 2015, 44(9): 2969-2976. DOI: 10.1007/s11664-015-3717-5
    [3]
    Rogalski A. History of infrared detectors[J]. Opto-Electronics Review, 2012, 20(3): 279-308.
    [4]
    Jóźwikowski K, Jóźwikowska A, Martyniuk A. Dislocations as a noise source in LWIR HgCdTe photodiodes[J]. Journal of Electronic Materials, 2016, 45(10): 4769-4781. DOI: 10.1007/s11664-016-4390-z
    [5]
    Johnson S M, Buell A A, Vilela M F, et al. HgCdTe/Si materials for long wavelength infrared detectors[J]. Journal of Electronic Materials, 2004, 33(6): 526-530. DOI: 10.1007/s11664-004-0041-x
    [6]
    Gopal V, Gupta S. Effect of dislocations on the zero-bias resistance-area product, quantum efficiency, and spectral response of LWIR HgCdTe photovoltaic detectors[J]. IEEE Transactions on Electron Devices, 2003, 50(5): 1220-1226. DOI: 10.1109/TED.2003.813230
    [7]
    Speck J S, Brewer M A, Beltz G, et al. Scaling laws for the reduction of threading dislocation densities in homogeneous buffer layers[J]. Journal of Applied Physics, 1996, 80(7): 3808-3816. DOI: 10.1063/1.363334
    [8]
    Ward T, Sánchez A M, Tang M, et al. Design rules for dislocation filters[J]. Journal of Applied Physics, 2014, 116(6): 063508. DOI: 10.1063/1.4892162
    [9]
    Carmody M, Lee D, Zandian M, et al. Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers[J]. Journal of Electronic Materials, 2003, 32(7): 710-716. DOI: 10.1007/s11664-003-0057-7
    [10]
    Badano G, Robin I C, Amstatt B, et al. Reduction of the dislocation density in molecular beam epitaxial CdTe (211) B on Ge (211)[J]. Journal of Crystal Growth, 2010, 312(10): 1721-1725. DOI: 10.1016/j.jcrysgro.2010.02.011
    [11]
    Benson J D, Bubulac L O, Smith P J, et al. Growth and analysis of HgCdTe on alternate substrates[J]. Journal of Electronic Materials, 2012, 41(10): 2971-2974. DOI: 10.1007/s11664-012-2089-3
    [12]
    Jacobs R N, Benson J D, Stoltz A J, et al. Analysis of thermal cycle-induced dislocation reduction in HgCdTe/CdTe/Si(211) by scanning transmission electron microscopy[J]. Journal of Crystal Growth, 2013, 366(MAR. 1): 88-94.
    [13]
    Brill G, Farrell S, Chen Y P, et al. Dislocation reduction of HgCdTe/Si through ex situ annealing[J]. Journal of Electronic Materials, 2010, 39(7): 967-973. DOI: 10.1007/s11664-010-1142-3
    [14]
    Arias J M, Zandian M, Shin S H, et al. Dislocation density reduction by thermal annealing of HgCdTe epilayers grown by molecular beam epitaxy on GaAs substrates[C]//AIP Conference Proceedings, 1991, 235(1): 1646-1650.
    [15]
    Yamaguchi M, Tachikawa M, Itoh Y, et al. Thermal annealing effects of defect reduction in GaAs on Si substrates[J]. Journal of Applied Physics, 1990, 68(9): 4518-4522. DOI: 10.1063/1.346156
    [16]
    Benson J D, Farrell S, Brill G, et al. Dislocation analysis in (112) B HgCdTe/CdTe/Si[J]. Journal of Electronic Materials, 2011, 40(8): 1847-1853. DOI: 10.1007/s11664-011-1670-5
    [17]
    Farrell S, Rao M V, Brill G, et al. Effect of cycle annealing parameters on dislocation density reduction for HgCdTe on Si[J]. Journal of Electronic Materials, 2011, 40(8): 1727-1732. DOI: 10.1007/s11664-011-1669-y
    [18]
    SHEN C, GU R J, FU X L, et al. Dislocation reduction in CdTe/HgCdTe film prepared by MBE on Si substrate[J]. Journal of Infrared and Millimeter Waves, 2011, 30(6): 490-494.
    [19]
    Vaghayenegar M, Jacobs R N, Benson J D, et al. Correlation of etch pits and dislocations in As-grown and thermal-cycle-annealed HgCdTe(211) films[J]. Microscopy and Microanalysis, 2017, 23(S1): 1526-1527. DOI: 10.1017/S1431927617008297
    [20]
    Szilagyi A, Grimbergen M N. Misfit and threading dislocations in HgCdTe epitaxy[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986, 4(4): 2200-2204.
    [21]
    Ciani A J, Chung P W. Simulations of dislocations in CdZnTe/SL/Si substrates[J]. Journal of Electronic Materials, 2010, 39(7): 1063-1069. DOI: 10.1007/s11664-009-1039-1
    [22]
    Freund L B. A criterion for arrest of a threading dislocation in a strained epitaxial layer due to an interface misfit dislocation in its path[J]. Journal of Applied Physics, 1990, 68(5): 2073-2080. DOI: 10.1063/1.346560
    [23]
    George I, Becagli F, LIU H Y, et al. Dislocation filters in GaAs on Si[J]. Semiconductor Science and Technology, 2015, 30(11): 114004. DOI: 10.1088/0268-1242/30/11/114004
    [24]
    WU J, JIANG Q, CHEN S, et al. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates[J]. ACS Photonics, 2016, 3(5): 749-753. DOI: 10.1021/acsphotonics.6b00076
    [25]
    CHEN S, LI W, WU J, et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon[J]. Nature Photonics, 2016, 10(5): 307-311. DOI: 10.1038/nphoton.2016.21
    [26]
    LEI W, REN Y L, Madni I, et al. Low dislocation density MBE process for CdTe-on-GaSb as an alternative substrate for HgCdTe growth[J]. Infrared Physics & Technology, 2018, 92: 96-102.
    [27]
    PAN W W, GU R J, ZHANG Z K, et al. Strained CdZnTe/CdTe Superlattices As threading dislocation filters in lattice mismatched MBE growth of CdTe on GaSb[J]. Journal of Electronic Materials, 2020, 49: 6983-6989. DOI: 10.1007/s11664-020-08406-1
    [28]
    Müller P, Zogg H, Fach A, et al. Reduction of threading dislocation densities in heavily lattice mismatched PbSe on Si(111) by glide[J]. Physical Review Letters, 1997, 78(15): 3007-3010. DOI: 10.1103/PhysRevLett.78.3007
    [29]
    ZHANG X G, LI P, ZHAO G, et al. Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls[J]. Journal of Electronic Materials, 1998, 27(11): 1248-1253. DOI: 10.1007/s11664-998-0078-3
    [30]
    ZHANG X G, Rodriguez A, WANG X, et al. Complete removal of threading dislocations from mismatched layers by patterned heteroepitaxial processing[J]. Applied Physics Letters, 2000, 77(16): 2524-2526. DOI: 10.1063/1.1319178
    [31]
    Stoltz A J, Benson J D, Carmody M, et al. Reduction of dislocation density in HgCdTe on Si by producing highly reticulated structures[J]. Journal of Electronic Materials, 2011, 40(8): 1785-1789. DOI: 10.1007/s11664-011-1697-7
    [32]
    Jacobs R N, Markunas J, Pellegrino J, et al. Role of thermal expansion matching in CdTe heteroepitaxy on highly lattice-mismatched substrates[J]. Journal of Crystal Growth, 2008, 310(12): 2960-2965. DOI: 10.1016/j.jcrysgro.2008.02.029
    [33]
    Kasap S, Willoughby A. Mercury Cadmium Telluride: Growth, Properties and Applications[M]. John Wiley & Sons, 2011.
    [34]
    Stoltz A J, Benson J D, Jacobs R, et al. Reduction of dislocation density by producing novel structures[J]. Journal of Electronic Materials, 2012, 41(10): 2949-2956. DOI: 10.1007/s11664-012-2106-6
    [35]
    Jacobs R N, Stoltz A J, Benson J D, et al. Analysis of mesa dislocation gettering in HgCdTe/CdTe/Si (211) by scanning transmission electron microscopy[J]. Journal of Electronic Materials, 2013, 42(11): 3148-3155. DOI: 10.1007/s11664-013-2691-z
    [36]
    Simingalam S, Pattison J, Chen Y, et al. Dislocation Reduction in HgCdTe Mesa Structures Formed on CdTe/Si[J]. Journal of Electronic Materials, 2016, 45(9): 1-6.
  • Related Articles

    [1]DAI Yueming, YANG Lufeng, TONG Xiongmin. Real-time Section State Verification Method of Energy Management System Low Voltage Equipment Based on Infrared Image and Deep Learning[J]. Infrared Technology , 2024, 46(12): 1464-1470.
    [2]CHEN Qiuyan, ZHANG Xinyan, HE Min, TIAN Yichun, LIU Ning, GUO Rui, WANG Xiaohui, YOU Siyuan, ZHANG Xiukun. Identification of Pipeline Thermal Image Leakage Based on Deep Learning[J]. Infrared Technology , 2024, 46(5): 522-531.
    [3]DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128.
    [4]FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943.
    [5]ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293.
    [6]ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986.
    [7]HE Qian, LIU Boyun. Review of Infrared Image Edge Detection Algorithms[J]. Infrared Technology , 2021, 43(3): 199-207.
    [8]FAN Peng, FENG Wanxing, ZHOU Ziqiang, ZHAO Chun, ZHOU Sheng, YAO Xiangyu. Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis[J]. Infrared Technology , 2021, 43(1): 51-55.
    [9]YANG Tao, DAI Jun, WU Zhongjian, JIN Daizhong, ZHOU Guojia. Target Recognition of Infrared Ship Based on Deep Learning[J]. Infrared Technology , 2020, 42(5): 426-433.
    [10]JIAO Anbo, HE Miao, LUO Haibo. Research on Significant Edge Detection of Infrared Image Based on Deep Learning[J]. Infrared Technology , 2019, 41(1): 72-77.
  • Cited by

    Periodical cited type(4)

    1. 陈秋菊,彭天昊,康万杰,何国锋. 特征融合的电力机械设备过热故障红外检测. 机械设计与制造. 2024(04): 337-341 .
    2. 尚华胜,甘淑,袁希平,朱智富,李绕波. 级联语义分割和边缘检测的GF-2影像耕地提取. 遥感信息. 2024(04): 134-143 .
    3. 刘志东. 改进神经网络的船舶红外图像边缘检测方法. 舰船科学技术. 2023(07): 166-169 .
    4. 浦莹开,张笃振. 一种细化边缘的轻量级边缘检测神经网络. 计算机应用研究. 2023(11): 3485-3489 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return