CHEN Rui, KONG Derui, TANG Tianmin, XIA Ming. Frequency Accuracy Analysis of Linear Stirling Refrigerator Inverter[J]. Infrared Technology , 2023, 45(1): 95-101.
Citation: CHEN Rui, KONG Derui, TANG Tianmin, XIA Ming. Frequency Accuracy Analysis of Linear Stirling Refrigerator Inverter[J]. Infrared Technology , 2023, 45(1): 95-101.

Frequency Accuracy Analysis of Linear Stirling Refrigerator Inverter

More Information
  • Received Date: April 26, 2022
  • Revised Date: June 22, 2022
  • During the entire work process, the frequency accuracy of input sine AC power directly affects the vibration of the linear Sterling refrigerator. Especially for single -piston linear Sterling refrigerators, the input sine AC electro -frequency accuracy will directly affect the vibration, reducing performance of the dynamic vibrator connected. Based on the research on the linear Stirling refrigerator inverter, through the analysis of the SPWM wave generation method, the MCU clock frequency in the inverter circuit, the cut-off frequency in the filter circuit, capacitance and inductance, etc., the relationship between the number of switches and frequency accuracy is obtained. According to the requirements of the actual application, the error between the actual output frequency of the linear Stirling refrigerator inverter and the target frequency must be less than ± 0.1Hz, and the frequency accuracy needs to be controlled within ± 0.1 %. Therefore, under this application conditions, when the MCU frequency is 72 MHz, the number of switches that meets the requirements is found to be between 1400-2400, and corresponding frequency accuracy is less than < ± 0.1%.
  • [1]
    Conrad T, Haley D, Lieb T, et al. FLIR FL-100 miniature linear stirling cryocooler development summary[C]//IOP Conference Series Materials Science and Engineering, 2020, 755: 0120451-6.
    [2]
    孔德锐, 夏明, 李海英, 等. 单活塞线性压缩机用动力吸振器理论分析与Matlab仿真[J]. 红外技术, 2021, 43(10): 1014-1021. http://hwjs.nvir.cn/article/id/30dc0583-921a-4fc2-8860-d12d4e846edc

    KONG Derui, XIA Ming, LI Haiying, et al. Theoretical analysis and Matlab simulation of power shock absorber for single-piston linear compressor[J]. Infrared Technology, 2021, 43(10): 1014-1021. http://hwjs.nvir.cn/article/id/30dc0583-921a-4fc2-8860-d12d4e846edc
    [3]
    王强, 王有政, 王天施, 等. 控制简单的节能型单相全桥逆变器[J]. 电子学报, 2022, 50(3): 5764-5768. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202203027.htm

    WANG Qiang, WANG Youzheng, WANG Tianshi, et al. Energy-saving single-phase full-bridge inverter with simple control[J]. Acta Electronica Sinica, 2022, 50(3): 5764-5768. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202203027.htm
    [4]
    庹元科, 徐定成, 傅剑锋, 等. 高效率并网逆变器发展综述[J]. 现代建筑电气, 2011(5): 451-454. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJQ201105014.htm

    YU Yuanke, XU Dingcheng, FU Jianfeng, et al. Review on the development of high-efficiency grid-connected inverter[J]. Modern Building Electrical, 2011(5): 451-454. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJQ201105014.htm
    [5]
    Berchowitz D M. Free-piston Stirling coolers International Refrigeration Conference Energy Efficiency and New Refrigerants[R]. Purdue University, 1992: 101417-101424.
    [6]
    Veprik A, Vilenchik H, Riabzev S, et al. Microminiature linear split stirling cryogenic cooler for portable infrared applications[C]//Proc. of SPIE, 2007, 6542: 65422F.
    [7]
    Korf H, Ruehlich I, Wiedmann T. Performance enhancement of linear stirling cryocoolers[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2000, 4130: 380-384.
    [8]
    周伟楠, 朱海峰, 陈雷, 等. 微型斯特林制冷机用柔性板弹簧性能分析[J]. 低温工程, 2019(6): 813-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DWGC201906003.htm

    ZHOU Weinan, ZHU Haifeng, CHEN Lei, et al. Performance analysis of flexible leaf springs for miniature Stirling chillers[J]. Low Temperature Engineering, 2019(6): 813-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DWGC201906003.htm
    [9]
    Veprik A, Zehter S, Vilenchik H, et al. Split Stirling linear cryogenic cooler for hightemperature infrared sensors[C]//Proc. SPIE, 2009, 7298: 729-816.
    [10]
    Veprik A M, Babitsky V I, Pundak N. Vibration control of linear split Stirling cryogenic cooler for airborne infrared application[J]. Shock and Vibration, 2000, 4256: 363-379. https://content.iospress.com/articles/shock-and-vibration/sav00124
    [11]
    邢岩. 电力电子技术基础[M]. 北京: 机械工业出版社, 2008.

    XING Yan. Fundamentals of Power Electronics[M]. Beijing: China Machine Press, 2008.
    [12]
    Steinke J K. Use of an LC filter to achieve a motor-friendly performance of the PWM voltage source inverter[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 649-654. DOI: 10.1109/60.790930
    [13]
    程佩青. 数字信号处理教程[M]. 第三版, 北京: 清华大学出版社, 2007.

    CHENG Peiqing. Digital Signal Processing Tutorial[M]. Third Edition, Beijing: Tsinghua University Press, 2007.
    [14]
    陈绍荣. 数字信号处理[M]. 北京: 国防工业出版社, 2016.

    CHEN Shaorong. Digital signal processing[M]. Beijing: National Defense Industry Press, 2016.
    [15]
    伍家驹, 章义国, 任吉林, 等. 单相PWM逆变器的滤波器的一种设计方法[J]. 电气传动, 2003, 33(3): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DQCZ200303002.htm

    WU Jiajv, ZHANG Yiguo, REN Jilin, et al. A method to design of filter for single-phase PWM inverter[J]. Electric Drive, 2003, 33(3): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DQCZ200303002.htm
    [16]
    俞杨威, 金天均, 谢文涛, 等. 基于PWM逆变器的LC滤波器[J]. 机电工程, 2007, 24(5): 350-352. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC200705015.htm

    YU Yangwei, JIN Tianjun, XIE Wentao, et al. LC filter based on PWM inverter[J]. Mechanical and Electrical Engineering, 2007, 24(5): 350-352. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC200705015.htm
    [17]
    宋强, 刘文华, 严平贵, 等. 大容量PW电压源逆变的LC滤波器设计[J]. 清华大学学报: 自然科学版, 2003, 43(3): 345-348. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200303016.htm

    SONG Qiang, LIU Wenhua, YAN Pinggui, et al. LC filter design for inverter of large capacity PW voltage source[J]. Journal of Tsinghua University: Natural Science Edition, 2003, 43(3): 345-348. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200303016.htm
    [18]
    Rev A. LC Filter Design[M]. Texas: Texas Instruments Incorporated, 2016.
    [19]
    Steinke J K. Use of an LC filter to achieve a motor-friendly performance of the PWM voltage source inverter[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 649-654, doi: 10.1109/60.790930,651-652.
  • Related Articles

    [1]LU Zhifei, LIU Haoyu, CHEN Wenliang, WANG Xiangjun. Accuracy Compensation Method for Infrared Human Body Temperature Measurement Accuracy[J]. Infrared Technology , 2021, 43(9): 895-901.
    [2]MENG Zhen, TIAN Changhui, HUANG Sining, FAN Qi, YANG Baiyu, TIAN Xiaoxia. Infrared Frequency Selective Surface with Dual Stopband Based on Hexagonal Ring Structure[J]. Infrared Technology , 2020, 42(6): 528-533.
    [3]JIANG Dazhao, DING Ruijun. Design of Pulse Frequency Modulation Circuit with Full Capacity at Ge-Level[J]. Infrared Technology , 2019, 41(7): 666-671.
    [4]WANG Binke, WANG Kexin, TIAN Changhui, QU Shaobo. A Novel Infrared Frequency Selective Surface[J]. Infrared Technology , 2019, 41(1): 22-26.
    [5]CHEN Xiaoli, TIAN Changhui, WANG Binke, CHE Zhixin. A Far-Infrared Frequency Selective Surface Based on Hexagonal Loop Structure[J]. Infrared Technology , 2018, 40(6): 551-555.
    [6]CHE Zhixin, TIAN Changhui, WANG Binke, YANG Baiyu, ZHANG Haifang, CHEN Xiaoli, TIAN Xiaoxia. An Infrared Frequency Selective Surface with Dual Stopband[J]. Infrared Technology , 2017, 39(7): 594-598.
    [7]LEI Shuyu, SHAO Shijing, TAN Guo. The Frequency Analysis Method of Noise in Uncooled IRFPA Detector[J]. Infrared Technology , 2016, 38(6): 449-456.
    [8]YIN Xue-song, DU Lei, CHEN Wen-hao, WANG Fang, PENG Li-juan. Study on Low Frequency Noise of PbS Infrared Detector[J]. Infrared Technology , 2010, 32(12): 704-707. DOI: 10.3969/j.issn.1001-8891.2010.12.005
    [9]GUAN Jin-Bin, CHEN Xiao-Ping, LI Hai-Ying, XIA Ming. Experimental Study on the Resonant Frequency of the Expander in Pneumatic Stirling Cooler[J]. Infrared Technology , 2009, 31(6): 319-322. DOI: 10.3969/j.issn.1001-8891.2009.06.003
    [10]Applied Infrared Detecting Technique Based on Multi-correlation of Frequency and Time[J]. Infrared Technology , 2003, 25(1): 74-76,81. DOI: 10.3969/j.issn.1001-8891.2003.01.019
  • Cited by

    Periodical cited type(2)

    1. 胡坤,张泰玮,李国彬,李学铭,唐利斌,杨培志. CoS量子点的尺寸可控制备及光学性质研究. 云南师范大学学报(自然科学版). 2023(05): 5-8 .
    2. 曲世敏. 基于改进PID控制光电探测系统能耗优化方法研究. 能源与环保. 2021(11): 121-127 .

    Other cited types(7)

Catalog

    Article views (180) PDF downloads (50) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return