ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512.
Citation: ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512.

Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm

More Information
  • Received Date: February 05, 2023
  • Revised Date: March 30, 2023
  • To address the low detection accuracy and poor robustness of infrared images compared with visible images, a multiscale object detection network YOLO-MIR(YOLO for multiscale IR images) for infrared images is proposed. First, to increase the adaptability of the network to infrared images, the feature extraction and fusion modules were improved to retain more details in the infrared images. Second, the detection ability of multiscale objects is enhanced, the scale of the fusion network is increased, and the fusion of infrared image features is facilitated. Finally, a data augmentation algorithm for infrared images was designed to increase the network robustness. Ablation experiments were conducted to evaluate the impact of different methods on the network performance, and the results show that the network performance was significantly improved using the infrared dataset. Compared with the prevalent algorithm YOLOv7, the average detection accuracy of this algorithm was improved by 3%, the adaptive ability to infrared images was improved, and the accurate detection of targets at various scales was realized.
  • [1]
    Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2014: 580-587.
    [2]
    Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 779-788.
    [3]
    LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector[J/OL]. arXiv preprint arXiv, 2017, https://arxiv.org/abs/1712.00960.
    [4]
    Redmon J, Farhadi A. Yolov3: An incremental improvement[J/OL]. arXiv preprint arXiv, 2018, https://arxiv.org/abs/1804.02767.
    [5]
    Jocher G, Chaurasia A, Stoken A, et al. ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference[Z/OL]. 2022, https://doi.org/10.5281/ZENODO.6222936.
    [6]
    [7]
    WANG C Y, Bochkovskiy A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv preprint arXiv, 2022, https://arxiv.org/abs/2207.02696.
    [8]
    LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 8759-8768.
    [9]
    Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]// Conference on Computer Vision & Pattern Recognition. IEEE, 2017: 6517-6525.
    [10]
    REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. http://pubmed.ncbi.nlm.nih.gov/27295650/
    [11]
    He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
    [12]
    ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586. http://www.xueshufan.com/publication/3194790201
    [13]
    Veit A, Matera T, Neumann L, et al. Coco-text: Dataset and benchmark for text detection and recognition in natural images[J]. arXiv preprint arXiv, 2016, https://arxiv.org/abs/1601.07140.
    [14]
    Smith A R. Color gamut transform pairs[J]. ACM Siggraph Computer Graphics, 1978, 12(3): 12-19. DOI: 10.1145/965139.807361
    [15]
    Zhou Z, Cao J, Wang H, et al. Image denoising algorithm via doubly bilateral filtering[C]// International Conference on Information Engineering and Computer Science. IEEE, 2009: 1-4.
    [16]
    Hoiem D, Divvala S K, Hays J H. Pascal VOC 2008 challenge[J]. Computer Science, 2009 https://www.semanticscholar.org/paper/Pascal-VOC-2008-Challenge-Hoiem-Divvala/9c327cf1bb8435a8fba27b6ace50bb907078d8d1.
    [17]
    ZHAO W Y. Discriminant component analysis for face recognition[C]//Proceedings 15th International Conference on Pattern Recognition, IEEE, 2000, 2: 818-821.
    [18]
    Venkataraman V, FAN G, FAN X. Target tracking with online feature selection in FLIR imagery[C]// IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007: 1-8.
    [19]
    CHEN R, LIU S, MU J, et al. Borrow from source models: efficient infrared object detection with limited examples[J]. Applied Sciences, 2022, 12(4): 1896. DOI: 10.3390/app12041896
    [20]
    Kera S B, Tadepalli A, Ranjani J J. A paced multi-stage block-wise approach for object detection in thermal images[J]. The Visual Computer, 2022, https://doi.org/10.1007/s00371-022-02445-x.
    [21]
    Vadidar M, Kariminezhad A, Mayr C, et al. Robust Environment Perception for Automated Driving: A Unified Learning Pipeline for Visual-Infrared Object Detection[C]// IEEE Intelligent Vehicles Symposium (Ⅳ). IEEE, 2022: 367-374.
  • Related Articles

    [1]DA Mei, JIANG Lin, TAO Youfeng, HU Miao. Improved Infrared Small Target Detection Algorithm Based on SSE-YOLO[J]. Infrared Technology , 2025, 47(4): 475-483.
    [2]CHEN Xiaohan, XU Yuanyuan. Infrared Multi-Scale Target Detection Algorithm Based on RCR-YOLO[J]. Infrared Technology , 2025, 47(4): 459-467.
    [3]CHEN Yonglin, WANG Hengtao, ZHANG Shang. Lightweight Infrared Target Detection Algorithm Based on YOLO v7[J]. Infrared Technology , 2024, 46(12): 1380-1389.
    [4]LIU Fukuan, LUO Suyun, HE Jia, ZHA Chaoneng. FVIT-YOLO v8: Improved YOLO v8 Small Object Detection Based on Multi-scale Fusion Attention Mechanism[J]. Infrared Technology , 2024, 46(8): 912-922.
    [5]ZHOU Huaping, WU Jin, LI Jingzhao, WU Tao. YOLO Infrared Target Detection Algorithm Combining Parallel Pooling and Self-Distillation[J]. Infrared Technology , 2024, 46(8): 883-891.
    [6]WANG Xiaodong, LYU Tongfa, BAO Mingzheng, HE Yongchun, XIN Peng, WU Tao. Infrared Image Recognition Method for Power Equipment Based on Improved YOLO v5[J]. Infrared Technology , 2024, 46(6): 722-727.
    [7]CHEN Jinni, BAI Xiaohua, LI Yunhong, TIAN Gufeng. PCB Defect Detection Based on PA-YOLO v5[J]. Infrared Technology , 2024, 46(6): 654-662.
    [8]KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981.
    [9]LI Yankai, XU Yuanyuan, LIU Ziqi, CHEN Yuqing. Aerial Infrared Target Detection Based on Improved YOLO v3 Algorithm[J]. Infrared Technology , 2023, 45(4): 386-393.
    [10]HOU Yiwei, LI Linhan, WANG Yan. Intelligent Equipment Object Recognition Based on Improved YOLO Network Guided by Infrared Saliency Detection[J]. Infrared Technology , 2020, 42(7): 644-650.
  • Cited by

    Periodical cited type(11)

    1. 刘丽明,王晋. 中国高分辨率对地观测系统卫星概况、特征及应用. 长春大学学报. 2024(02): 21-30 .
    2. 游绣月,唐义,张丽君,王冬晓,李泳辉,张肃. 红外多光谱相机高精度同步控制设计与验证. 红外与激光工程. 2024(11): 139-148 .
    3. SHI Feng,ZHAO Yanhua,XU Pengmei,LI Yan. 星载长波红外探测技术研究(英文). Aerospace China. 2024(02): 21-27 .
    4. 刘志豪,金伟其,李力,沙漠洲,郭勤. 四波段共光轴成像实验平台及其图像融合. 光学精密工程. 2022(01): 1-11 .
    5. 张振清. 基于多光谱成像技术的案发现场精斑研究. 大众标准化. 2021(09): 21-23 .
    6. 吕建良,何晨. 成像光谱仪视场中心波长定标角度自动控制方法. 自动化技术与应用. 2021(07): 116-120 .
    7. 刘佳,郭思华,李小平,廖玉详,印华. 基于多视角协同的变电站多谱段图像自动巡检研究. 自动化与仪器仪表. 2021(09): 181-184+189 .
    8. 李轶庭,王灵杰,张玉慧,刘铭鑫. 天基平台宽谱段成像光学系统设计. 中国光学. 2021(06): 1495-1503 .
    9. 薛庆生,田中天,杨柏,纪振华,栾晓宁,牟冰,邱心涛. 静止轨道高光谱海洋水色仪光学系统设计. 光子学报. 2020(05): 51-60 .
    10. 李晨阳,李立钢,杨震,倪伟. 基于三维场景的红外成像仿真框架及实现. 计算机仿真. 2020(07): 248-252 .
    11. 吴圣娟,胡彦博,胡旭,洪建堂,李红福,马伊娜,邓蔚. 卫星用高光谱红外焦平面读出电路设计. 红外技术. 2020(11): 1081-1088 . 本站查看

    Other cited types(15)

Catalog

    Article views (263) PDF downloads (59) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return