Citation: | ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512. |
[1] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2014: 580-587.
|
[2] |
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 779-788.
|
[3] |
LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector[J/OL]. arXiv preprint arXiv, 2017, https://arxiv.org/abs/1712.00960.
|
[4] |
Redmon J, Farhadi A. Yolov3: An incremental improvement[J/OL]. arXiv preprint arXiv, 2018, https://arxiv.org/abs/1804.02767.
|
[5] |
Jocher G, Chaurasia A, Stoken A, et al. ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference[Z/OL]. 2022, https://doi.org/10.5281/ZENODO.6222936.
|
[6] |
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. arXiv preprint arXiv, 2020, https://arxiv.org/abs/2004.10934#:~:text=%EE%80%80YOLOv4%3A%20Optimal%20Speed%20and%20Accuracy%20of%20Object%20Detection%EE%80%81.,features%20operate%20on%20certain%20models%20exclusively%20and%20.
|
[7] |
WANG C Y, Bochkovskiy A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv preprint arXiv, 2022, https://arxiv.org/abs/2207.02696.
|
[8] |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 8759-8768.
|
[9] |
Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]// Conference on Computer Vision & Pattern Recognition. IEEE, 2017: 6517-6525.
|
[10] |
REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. http://pubmed.ncbi.nlm.nih.gov/27295650/
|
[11] |
He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
[12] |
ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586. http://www.xueshufan.com/publication/3194790201
|
[13] |
Veit A, Matera T, Neumann L, et al. Coco-text: Dataset and benchmark for text detection and recognition in natural images[J]. arXiv preprint arXiv, 2016, https://arxiv.org/abs/1601.07140.
|
[14] |
Smith A R. Color gamut transform pairs[J]. ACM Siggraph Computer Graphics, 1978, 12(3): 12-19. DOI: 10.1145/965139.807361
|
[15] |
Zhou Z, Cao J, Wang H, et al. Image denoising algorithm via doubly bilateral filtering[C]// International Conference on Information Engineering and Computer Science. IEEE, 2009: 1-4.
|
[16] |
Hoiem D, Divvala S K, Hays J H. Pascal VOC 2008 challenge[J]. Computer Science, 2009 https://www.semanticscholar.org/paper/Pascal-VOC-2008-Challenge-Hoiem-Divvala/9c327cf1bb8435a8fba27b6ace50bb907078d8d1.
|
[17] |
ZHAO W Y. Discriminant component analysis for face recognition[C]//Proceedings 15th International Conference on Pattern Recognition, IEEE, 2000, 2: 818-821.
|
[18] |
Venkataraman V, FAN G, FAN X. Target tracking with online feature selection in FLIR imagery[C]// IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007: 1-8.
|
[19] |
CHEN R, LIU S, MU J, et al. Borrow from source models: efficient infrared object detection with limited examples[J]. Applied Sciences, 2022, 12(4): 1896. DOI: 10.3390/app12041896
|
[20] |
Kera S B, Tadepalli A, Ranjani J J. A paced multi-stage block-wise approach for object detection in thermal images[J]. The Visual Computer, 2022, https://doi.org/10.1007/s00371-022-02445-x.
|
[21] |
Vadidar M, Kariminezhad A, Mayr C, et al. Robust Environment Perception for Automated Driving: A Unified Learning Pipeline for Visual-Infrared Object Detection[C]// IEEE Intelligent Vehicles Symposium (Ⅳ). IEEE, 2022: 367-374.
|
[1] | DA Mei, JIANG Lin, TAO Youfeng, HU Miao. Improved Infrared Small Target Detection Algorithm Based on SSE-YOLO[J]. Infrared Technology , 2025, 47(4): 475-483. |
[2] | CHEN Xiaohan, XU Yuanyuan. Infrared Multi-Scale Target Detection Algorithm Based on RCR-YOLO[J]. Infrared Technology , 2025, 47(4): 459-467. |
[3] | CHEN Yonglin, WANG Hengtao, ZHANG Shang. Lightweight Infrared Target Detection Algorithm Based on YOLO v7[J]. Infrared Technology , 2024, 46(12): 1380-1389. |
[4] | LIU Fukuan, LUO Suyun, HE Jia, ZHA Chaoneng. FVIT-YOLO v8: Improved YOLO v8 Small Object Detection Based on Multi-scale Fusion Attention Mechanism[J]. Infrared Technology , 2024, 46(8): 912-922. |
[5] | ZHOU Huaping, WU Jin, LI Jingzhao, WU Tao. YOLO Infrared Target Detection Algorithm Combining Parallel Pooling and Self-Distillation[J]. Infrared Technology , 2024, 46(8): 883-891. |
[6] | WANG Xiaodong, LYU Tongfa, BAO Mingzheng, HE Yongchun, XIN Peng, WU Tao. Infrared Image Recognition Method for Power Equipment Based on Improved YOLO v5[J]. Infrared Technology , 2024, 46(6): 722-727. |
[7] | CHEN Jinni, BAI Xiaohua, LI Yunhong, TIAN Gufeng. PCB Defect Detection Based on PA-YOLO v5[J]. Infrared Technology , 2024, 46(6): 654-662. |
[8] | KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981. |
[9] | LI Yankai, XU Yuanyuan, LIU Ziqi, CHEN Yuqing. Aerial Infrared Target Detection Based on Improved YOLO v3 Algorithm[J]. Infrared Technology , 2023, 45(4): 386-393. |
[10] | HOU Yiwei, LI Linhan, WANG Yan. Intelligent Equipment Object Recognition Based on Improved YOLO Network Guided by Infrared Saliency Detection[J]. Infrared Technology , 2020, 42(7): 644-650. |
1. |
刘丽明,王晋. 中国高分辨率对地观测系统卫星概况、特征及应用. 长春大学学报. 2024(02): 21-30 .
![]() | |
2. |
游绣月,唐义,张丽君,王冬晓,李泳辉,张肃. 红外多光谱相机高精度同步控制设计与验证. 红外与激光工程. 2024(11): 139-148 .
![]() | |
3. |
SHI Feng,ZHAO Yanhua,XU Pengmei,LI Yan. 星载长波红外探测技术研究(英文). Aerospace China. 2024(02): 21-27 .
![]() | |
4. |
刘志豪,金伟其,李力,沙漠洲,郭勤. 四波段共光轴成像实验平台及其图像融合. 光学精密工程. 2022(01): 1-11 .
![]() | |
5. |
张振清. 基于多光谱成像技术的案发现场精斑研究. 大众标准化. 2021(09): 21-23 .
![]() | |
6. |
吕建良,何晨. 成像光谱仪视场中心波长定标角度自动控制方法. 自动化技术与应用. 2021(07): 116-120 .
![]() | |
7. |
刘佳,郭思华,李小平,廖玉详,印华. 基于多视角协同的变电站多谱段图像自动巡检研究. 自动化与仪器仪表. 2021(09): 181-184+189 .
![]() | |
8. |
李轶庭,王灵杰,张玉慧,刘铭鑫. 天基平台宽谱段成像光学系统设计. 中国光学. 2021(06): 1495-1503 .
![]() | |
9. |
薛庆生,田中天,杨柏,纪振华,栾晓宁,牟冰,邱心涛. 静止轨道高光谱海洋水色仪光学系统设计. 光子学报. 2020(05): 51-60 .
![]() | |
10. |
李晨阳,李立钢,杨震,倪伟. 基于三维场景的红外成像仿真框架及实现. 计算机仿真. 2020(07): 248-252 .
![]() | |
11. |
吴圣娟,胡彦博,胡旭,洪建堂,李红福,马伊娜,邓蔚. 卫星用高光谱红外焦平面读出电路设计. 红外技术. 2020(11): 1081-1088 .
![]() |