Citation: | CHEN Yonglin, WANG Hengtao, ZHANG Shang. Lightweight Infrared Target Detection Algorithm Based on YOLO v7[J]. Infrared Technology , 2024, 46(12): 1380-1389. |
Aiming at the detection difficulties of infrared images such as low signal-to-noise ratio, poor resolution, and much noise and clutter. We propose a lightweight infrared image target detection algorithm ITD-YOLO based on YOLOv7. Firstly, the ITD-YOLO algorithm redesigns the network structure, and re-adjusts the architecture of the feature extraction network and the feature fusion network. Crop out the large receptive fields corresponding to the deep layers in the original network, and adjust the model preset anchor frames based on the output of the reconstructed network feature map. The relationship between deep and shallow features in multi-scale feature fusion is changed to increase the weight of the detail information extracted by the shallow network in the fusion to improve the detection performance of smaller targets; then, PConv is introduced into the ELAN module to replace the conventional convolution to further reduce the model computation. Next, the model loss function is adjusted to PolyLoss to accelerate the model convergence and further enhance the detection performance for targets; finally, SIoU is used as the edge loss function to enhance the localisation accuracy for targets. The experimental results show that ITB-YOLO can effectively improve the detection effect, and the mean average accuracy is increased by 2.27% and 7.29% compared with YOLOv7s on FLIR and OSU datasets, respectively. The volume of the model obtained after the improvement is only 17.7 MB, and the computation volume decreases by 37.11%. Comparing with the mainstream algorithms, ITD-YOLO has been improved to a certain extent in all the indexes, and can meet the real-time infrared target detection task.
[1] |
Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV), 2015: 1440-1448. DOI: 10.1109/ICCV.2015.169.
|
[2] |
REN S. Faster r-CNN: towards real-time object detection with region proposal networks[J]. arxiv preprint arxiv: 1506.01497, 2015.
|
[3] |
HE K, Gkioxari G, Dollár P, et al. Mask r- CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
[4] |
Bochkovskiy A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.
|
[5] |
Redmon J, Farhadi A. Yolov3: an incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
|
[6] |
Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
|
[7] |
LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//Computer Vision–ECCV 2016, 2016: 21-37.
|
[8] |
DUAN K W, BAI S, XIE L X, et al. Centernet: keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6569-6578.
|
[9] |
TANG C W, LIU C L, CHIU P S. HRCenterNet: an anchorless approach to Chinese character segmentation in historical documents[C]//2020 IEEE International Conference on Big Data (Big Data), 2020: 1924-1930.
|
[10] |
Vaswani A. Attention is all you need[J/OL]. Advances in Neural Information Processing Systems, 2017: 10.48550/arXiv.1706.03762
|
[11] |
王恒涛, 张上, 陈想, 等. 轻量化无人机航拍目标检测算法[J]. 电子测量技术, 2022, 45(19): 167-174.
WANG Hengtai, ZHANG Shang, CHEN Xiang, et al. Lightweight target detection algorithm for drone aerial photography[J]. Electronic Measurement Technology, 2022, 45(19): 167-174.
|
[12] |
王恒涛, 张上. 轻量化SAR图像舰船目标检测算法[J]. 电光与控制, 2023, 30(5): 99-104, 110.
WANG Hengtai, ZHANG Shang. Lightweight SAR image ship target detection algorithm[J]. Electro-Optics and Control, 2023, 30(5): 99-104, 110.
|
[13] |
黄磊, 杨媛, 杨成煜, 等. FS-YOLOv5: 轻量化红外目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 215-224.
HUANG Lei, YANG Yuan, YANG Chengyu, et al. FS-YOLOv5: lightweight infrared target detection method[J]. Computer Engineering and Applications, 2023, 59(9): 215-224.
|
[14] |
贺顺, 谢永妮, 杨志伟, 等. 基于IHBF的增强局部对比度红外小目标检测方法[J]. 红外技术, 2022, 44(11): 1132-1138. http://hwjs.nvir.cn/article/id/0f2609dc-79df-467e-ac1d-4d5f888850d1
HE Shun, XIE Yongni, YANG Zhiwei, et al. Enhanced local contrast infrared small target detection method based on IHBF[J]. Infrared Technology, 2022, 44(11): 1132-1138. http://hwjs.nvir.cn/article/id/0f2609dc-79df-467e-ac1d-4d5f888850d1
|
[15] |
李飚, 徐智勇, 王琛, 等. 基于自适应梯度倒数滤波红外弱小目标场景背景抑制[J]. 光电工程, 2021, 48(8): 47-58.
LI Biao, XU Zhiyong, WANG Chen, et al. Adaptive gradient reciprocal filtering for infrared dim and small target scene background suppression[J]. Opto-Electronic Engineering, 2021, 48(8): 47-58.
|
[16] |
李向荣, 孙立辉. 融合注意力机制的多尺度红外目标检测[J]. 红外技术, 2023, 45(7): 746-754. http://hwjs.nvir.cn/article/id/2e1d129d-a77a-4dba-8de5-135fb8b75ee7
LI Xiangrong, SUN Lihui. Multi-scale infrared target detection with attention mechanism fusion[J]. Infrared Technology, 2023, 45(7): 746-754. http://hwjs.nvir.cn/article/id/2e1d129d-a77a-4dba-8de5-135fb8b75ee7
|
[17] |
BAO C, CAO J, HAO Q, et al. Dual-YOLO architecture from infrared and visible images for object detection[J]. Sensors, 2023, 23(6): 2934. DOI: 10.3390/s23062934
|
[18] |
LI L, JIANG L, ZHANG J, et al. A complete YOLO-based ship detection method for thermal infrared remote sensing images under complex backgrounds[J]. Remote Sensing, 2022, 14(7): 1534. DOI: 10.3390/rs14071534
|
[19] |
HONG R, WANG X, FANG Y, et al. Yolo-light: remote straw-burning smoke detection based on depthwise separable convolution and channel attention mechanisms[J]. Applied Sciences, 2023, 13(9): 5690. DOI: 10.3390/app13095690
|
[20] |
李强龙, 周新文, 位梦恩, 等. 基于条形池化和注意力机制的街道场景红外目标检测算法[J]. 计算机工程, 2023, 49(8): 310-320.
LI Qianglong, ZHOU Xinwen, WEI Meng'en, et al. Infrared target detection algorithm in street scene based on stripe pooling and attention mechanism[J]. Computer Engineering, 2023, 49(8): 310-320.
|
[21] |
李杨, 武连全, 杨海涛, 等. 一种无人机视角下的小目标检测算法[J]. 红外技术, 2023, 45(9): 925-931. http://hwjs.nvir.cn/article/id/96c0d27e-e9e1-49bf-b1b3-9a496e00f91f
LI Yang, WU Lianquan, YANG Haitao, et al. A small target detection algorithm from drone perspective[J]. Infrared Technology, 2023, 45(9): 925-931. http://hwjs.nvir.cn/article/id/96c0d27e-e9e1-49bf-b1b3-9a496e00f91f
|
[22] |
CHEN J, KAO S, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[J]. arXiv preprint arXiv: 2303.03667, 2023.
|
[23] |
LENG Z, TAN M, LIU C, et al. Polyloss: a polynomial expansion perspective of classification loss functions[J]. arXiv preprint arXiv: 2204.12511, 2022.
|
[24] |
Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression[J]. arXiv preprint arXiv: 2205.12740, 2022.
|