Citation: | XIONG Xiong, DUAN Yu, HU Mingdeng, LI Ruiping, DU Yu, MAO Jianhong. Reliability Research for 640×512 Miniaturized IR Detector Dewar Assembly[J]. Infrared Technology , 2022, 44(1): 89-95. |
[1] |
Philippe C. Sofradir MCT technology for space applications[C]//SPIE, 2009, 7330: 1-12.
|
[2] |
Marianne M, Xavier B, PhilippeT. IR detector dewar and assemblies for stringent environmental conditions[C]//SPIE, 2007, 6542: 1-11.
|
[3] |
Xavier B, Alain M, Michel V, et al. Reliability optimization for IR detectors with compact cryo-coolers[C]//SPIE, 2005, 5783: 187-198.
|
[4] |
张亚平, 朱颖峰, 刘湘云, 等. 基于材料放气特性的杜瓦真空失效时间研究[J]. 真空, 2016, 53(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201601017.htm
ZHANG Yaping, ZHU Yingfeng, LIU Xiangyun, et al. Dewar vacuum failure time based on the material outgassing characteristics[J]. Vacuum, 2016, 53(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201601017.htm
|
[5] |
王冠, 孟令伟, 张冬亮, 等. 640×512 15μm杜瓦真空失效的极限真空度研究[J]. 激光与红外, 2019, 49(12): 1442-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201912010.htm
WANG Guan, MENG Lingwei, ZHANG Dongliang, et al. Study on the limit vacuum degree of 640×512 15 μm dewar vacuum failure[J]. Laser & Infrared, 2019, 49(12): 1442-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201912010.htm
|
[6] |
孙闻, 俞君, 张磊. 微型红外探测器组件集成技术及其应用[J]. 红外, 2017, 38(4): 1-5. DOI: 10.3969/j.issn.1672-8785.2017.04.001
SUN Wen, YU Jun, ZHANG Lei. Integrated technology of miniature infrared detector assembly and its application[J]. Infrared, 2017, 38(4): 1-5. DOI: 10.3969/j.issn.1672-8785.2017.04.001
|
[7] |
中国兵器工业集团有限公司. 热像仪用多元金属杜瓦瓶通用规范[S].
GJB 8674-2015, 2016. China North Industries Group Corporation Limited. General specification of multi-lead metal dewar for thermal imaging systems[S]. GJB 8674-2015, 2016.
|
[8] |
黄一彬, 王英, 朱颖峰, 等. 红外探测器杜瓦封装多余物的衍射分析及控制[J]. 红外与激光工程, 2021, 50(3): 20200177. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202103011.htm
HUANG Yibin, WANG Ying, ZHU Yingfeng, et al. Diffraction analysis and control of remainders in infrared detector dewar packaging[J]. Infrared and Laser Engineering, 2021, 50(3): 20200177. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202103011.htm
|
[9] |
黄燕, 吴全信. 阿列尼乌斯模型在红外微型金属杜瓦的真空寿命试验研究中的应用[J]. 低温与超导, 2005, 33(2): 69-72. DOI: 10.3969/j.issn.1001-7100.2005.02.017
HUANG Yan, WU Quanxin. Application of Arrhenius model in vacuum life test research of infrared miniature metal dewar[J]. Cryogenicsand Superconductivity, 2005, 33(2): 69-72. DOI: 10.3969/j.issn.1001-7100.2005.02.017
|
[10] |
张亚平, 刘湘云. 红外微型杜瓦真空退化特性研究综述[J]. 红外, 2013, 34(2): 10-15. DOI: 10.3969/j.issn.1672-8785.2013.02.02
ZHANG Yaping, LIU Xiangyun. Review of vacuum degradation in infrared detector micro-dewar[J]. Infrared, 2013, 34(2): 10-15. DOI: 10.3969/j.issn.1672-8785.2013.02.02
|
[11] |
张亚平, 徐世春, 徐冬梅, 等. 快速评价微杜瓦真空寿命及应用[J]. 真空科学与技术学报, 2018, 38(7): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201807003.htm
ZHANG Yaping, XU Shichun, XU Dongmei, et al. Rapid prediction of longest holding-time of high-vacuum in micro-dewar: an experimental sudy[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(7): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201807003.htm
|
[12] |
WANG Yang, MENG Chao, MA Wei. Review of reliability research on infrared detector[C]//SPIE, 2021, 11763: 1-7.
|
[13] |
王洋, 张宏飞, 孟超, 等. InSb多元探测器玻璃杜瓦贮存寿命研究[J]. 航空兵器, 2020, 27(2): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202002013.htm
WANG Yang, ZHANG Hongfei, MENG Chao, et al. Study on the storage life of InSb multi-element detector glass dewar[J]. Aero Weaponry, 2020, 27(2): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202002013.htm
|
[14] |
林日东, 刘伟, 王冠, 等. 红外焦平面探测器杜瓦组件真空寿命分析[J]. 激光与红外, 2011, 41(7): 779-783. DOI: 10.3969/j.issn.1001-5078.2011.07.015
LIN Ridong, LIU Wei, WANG Guan, et al. Vacuum life analyse of infrared detector & dewar assembly[J]. Laser & Infrared, 2011, 41(7): 779-783. DOI: 10.3969/j.issn.1001-5078.2011.07.015
|
[1] | AI Zhiwei, ZHANG Mufan, ZHU Hua, JI Jianbo, BAI Yuanzhong. Design of Adaptive Inversion Proportional-Integral-Derivative Control System for Fast-Steering Mirror[J]. Infrared Technology , 2024, 46(2): 144-149. |
[2] | LI Shuai, YANG Baoyu, LU Yan. Adaptive PID Control Method Based on Space Optical Mechanical Thermal Model[J]. Infrared Technology , 2021, 43(10): 934-939. |
[3] | CAI Yusheng, ZHU Jun, SHI Lei, ZHANG Jingzhong. Fuzzy Adaptive PID Control of Large Aperture Fast Steering Mirror[J]. Infrared Technology , 2021, 43(6): 523-531. |
[4] | LUO Na, ZHU Jiang, LI Yan. Simulation of DC Motor Control Algorithm Based on Intelligent PID[J]. Infrared Technology , 2020, 42(3): 218-222. |
[5] | ZHU Shuangshuang, ZOU Peng, LU Meina, ZHANG Aiwen, LIU Zhenhai, QIU Zhenwei, HONG Jin. Temperature Control System Design of Infrared Detector Based on Bang-Bang and PID Control[J]. Infrared Technology , 2017, 39(11): 990-995. |
[6] | YUAN Zhiwei, HUANG Shucai, TANG Yidong, XIONG Zhigang. Infrared Small Target Detection Based on Adaptive SUSAN-controlled Anisotropic Diffusion[J]. Infrared Technology , 2016, 38(10): 850-854. |
[7] | HUA Wen-tao, JIA Xiao-hong, DING Hai-shan. Design of Seeker Stabilized Platform Control Parameters Based on Particle Swarm Optimization[J]. Infrared Technology , 2013, (8): 507-511. |
[8] | WANG Xiao-dong, YANG Nan-sheng. Study on Fuzzy-PID Servo Controller Design and in Infrared Search and Track System[J]. Infrared Technology , 2007, 29(2): 107-111. DOI: 10.3969/j.issn.1001-8891.2007.02.012 |
[9] | XIA Li-kun, HOU Yang, LI Yin-zhu, TAI Yun-jian, YAN jun, MO Qi-yuan. PID Control Technology in the Laser Etching System for Ferroelectric Materials[J]. Infrared Technology , 2006, 28(8): 489-492. DOI: 10.3969/j.issn.1001-8891.2006.08.014 |
[10] | MA Chao-jie, LI Xiao-xia, LIN Zhi-dan, XU Ying, LING Yong-shun. Infrared Features Control Technology Based on Surface Design[J]. Infrared Technology , 2006, 28(3): 157-160. DOI: 10.3969/j.issn.1001-8891.2006.03.009 |