XIONG Xiong, DUAN Yu, HU Mingdeng, LI Ruiping, DU Yu, MAO Jianhong. Reliability Research for 640×512 Miniaturized IR Detector Dewar Assembly[J]. Infrared Technology , 2022, 44(1): 89-95.
Citation: XIONG Xiong, DUAN Yu, HU Mingdeng, LI Ruiping, DU Yu, MAO Jianhong. Reliability Research for 640×512 Miniaturized IR Detector Dewar Assembly[J]. Infrared Technology , 2022, 44(1): 89-95.

Reliability Research for 640×512 Miniaturized IR Detector Dewar Assembly

More Information
  • Received Date: October 10, 2021
  • Revised Date: November 10, 2021
  • Driven by the concept of SWaP3 (Size, Weight, and Power, Performance and Price), the development of the third-generation cooled IR detectors is proceeding in the direction of high performance, miniaturization, and light weight. As core military electronic devices, the reliability of IR detectors has become the focus of research. In this study, based on the 640×512/15 μm miniaturized dewar developed by Zhejiang Juexin Microelectronics Co., Ltd., a systematic reliability research is carried out. This research involves four dimensions, namely mechanics, thermodynamics, remainders, and vacuum. The performance of the 640×512/15 μm miniaturized dewar is evaluated through reliability tests. The results show that the miniaturized dewar has high reliability to satisfy most military needs.
  • [1]
    Philippe C. Sofradir MCT technology for space applications[C]//SPIE, 2009, 7330: 1-12.
    [2]
    Marianne M, Xavier B, PhilippeT. IR detector dewar and assemblies for stringent environmental conditions[C]//SPIE, 2007, 6542: 1-11.
    [3]
    Xavier B, Alain M, Michel V, et al. Reliability optimization for IR detectors with compact cryo-coolers[C]//SPIE, 2005, 5783: 187-198.
    [4]
    张亚平, 朱颖峰, 刘湘云, 等. 基于材料放气特性的杜瓦真空失效时间研究[J]. 真空, 2016, 53(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201601017.htm

    ZHANG Yaping, ZHU Yingfeng, LIU Xiangyun, et al. Dewar vacuum failure time based on the material outgassing characteristics[J]. Vacuum, 2016, 53(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201601017.htm
    [5]
    王冠, 孟令伟, 张冬亮, 等. 640×512 15μm杜瓦真空失效的极限真空度研究[J]. 激光与红外, 2019, 49(12): 1442-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201912010.htm

    WANG Guan, MENG Lingwei, ZHANG Dongliang, et al. Study on the limit vacuum degree of 640×512 15 μm dewar vacuum failure[J]. Laser & Infrared, 2019, 49(12): 1442-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201912010.htm
    [6]
    孙闻, 俞君, 张磊. 微型红外探测器组件集成技术及其应用[J]. 红外, 2017, 38(4): 1-5. DOI: 10.3969/j.issn.1672-8785.2017.04.001

    SUN Wen, YU Jun, ZHANG Lei. Integrated technology of miniature infrared detector assembly and its application[J]. Infrared, 2017, 38(4): 1-5. DOI: 10.3969/j.issn.1672-8785.2017.04.001
    [7]
    中国兵器工业集团有限公司. 热像仪用多元金属杜瓦瓶通用规范[S].

    GJB 8674-2015, 2016. China North Industries Group Corporation Limited. General specification of multi-lead metal dewar for thermal imaging systems[S]. GJB 8674-2015, 2016.
    [8]
    黄一彬, 王英, 朱颖峰, 等. 红外探测器杜瓦封装多余物的衍射分析及控制[J]. 红外与激光工程, 2021, 50(3): 20200177. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202103011.htm

    HUANG Yibin, WANG Ying, ZHU Yingfeng, et al. Diffraction analysis and control of remainders in infrared detector dewar packaging[J]. Infrared and Laser Engineering, 2021, 50(3): 20200177. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202103011.htm
    [9]
    黄燕, 吴全信. 阿列尼乌斯模型在红外微型金属杜瓦的真空寿命试验研究中的应用[J]. 低温与超导, 2005, 33(2): 69-72. DOI: 10.3969/j.issn.1001-7100.2005.02.017

    HUANG Yan, WU Quanxin. Application of Arrhenius model in vacuum life test research of infrared miniature metal dewar[J]. Cryogenicsand Superconductivity, 2005, 33(2): 69-72. DOI: 10.3969/j.issn.1001-7100.2005.02.017
    [10]
    张亚平, 刘湘云. 红外微型杜瓦真空退化特性研究综述[J]. 红外, 2013, 34(2): 10-15. DOI: 10.3969/j.issn.1672-8785.2013.02.02

    ZHANG Yaping, LIU Xiangyun. Review of vacuum degradation in infrared detector micro-dewar[J]. Infrared, 2013, 34(2): 10-15. DOI: 10.3969/j.issn.1672-8785.2013.02.02
    [11]
    张亚平, 徐世春, 徐冬梅, 等. 快速评价微杜瓦真空寿命及应用[J]. 真空科学与技术学报, 2018, 38(7): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201807003.htm

    ZHANG Yaping, XU Shichun, XU Dongmei, et al. Rapid prediction of longest holding-time of high-vacuum in micro-dewar: an experimental sudy[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(7): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201807003.htm
    [12]
    WANG Yang, MENG Chao, MA Wei. Review of reliability research on infrared detector[C]//SPIE, 2021, 11763: 1-7.
    [13]
    王洋, 张宏飞, 孟超, 等. InSb多元探测器玻璃杜瓦贮存寿命研究[J]. 航空兵器, 2020, 27(2): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202002013.htm

    WANG Yang, ZHANG Hongfei, MENG Chao, et al. Study on the storage life of InSb multi-element detector glass dewar[J]. Aero Weaponry, 2020, 27(2): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202002013.htm
    [14]
    林日东, 刘伟, 王冠, 等. 红外焦平面探测器杜瓦组件真空寿命分析[J]. 激光与红外, 2011, 41(7): 779-783. DOI: 10.3969/j.issn.1001-5078.2011.07.015

    LIN Ridong, LIU Wei, WANG Guan, et al. Vacuum life analyse of infrared detector & dewar assembly[J]. Laser & Infrared, 2011, 41(7): 779-783. DOI: 10.3969/j.issn.1001-5078.2011.07.015
  • Related Articles

    [1]GUO Xuchen, FAN Yugang, JIANG Mingkai. Self-Ensembling Network Model and Its Hyperspectral Object Recognition Under Regularization Constraint[J]. Infrared Technology , 2025, 47(7): 823-832.
    [2]NIE Genliang, CHENG Xiaohong, ZHOU Chao, HOU Dehua, LI Zhongyu. Three-dimensional Characterization of Road Aggregates Based on Thermal Infrared Depth Estimation[J]. Infrared Technology , 2024, 46(9): 1099-1105.
    [3]XIA Yan. Research on 3D Target Recognition Algorithm Based on Infrared Features[J]. Infrared Technology , 2022, 44(11): 1161-1166.
    [4]YANG Yanlong, XU Chao. Fusion Reconstruction Method for 3D Temperature Fields on the Human Body Surface[J]. Infrared Technology , 2022, 44(1): 33-40.
    [5]WEI Jiali, QU Huidong, WANG Yongxian, ZHU Junqing, GUAN Yingjun. Research Review of 3D Cameras Based on Time-of-Flight Method[J]. Infrared Technology , 2021, 43(1): 60-67.
    [6]WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271.
    [7]ZHONG Hai, WANG Meng, WANG Qi. IR Technique Investigation of Boundary Layer Transition Measurement in Flight Tests[J]. Infrared Technology , 2019, 41(8): 712-718.
    [8]YAN Xinjie, LIN Yu, LI Jian, ZHANG Jin, LIN Dandan. Compensation Model of MEMS Gyroscope's Null Shift Based on Temperature Constraint Algorithm[J]. Infrared Technology , 2017, 39(1): 73-80.
    [9]CHEN Si, WANG Jing-dong, LI Peng. A Stereo Matching Algorithm Based on Multi-directional Constraints[J]. Infrared Technology , 2011, 33(11): 639-645. DOI: 10.3969/j.issn.1001-8891.2011.11.005
    [10]CAO Yi, WANG Jing-dong, LI Peng. Dynamic Programming Stereo Matching Algorithm Based on Vertical Constraint[J]. Infrared Technology , 2008, 30(12): 722-726. DOI: 10.3969/j.issn.1001-8891.2008.12.010
  • Cited by

    Periodical cited type(11)

    1. 杨宏韬,李鑫,程云龙,李秀兰,张鹏,白昊天. 基于DoN-LMedS的焊道点云分割方法. 组合机床与自动化加工技术. 2025(03): 209-213+218 .
    2. 冯斌. 大流量浆体长输管道机械撞击损伤检测方法. 机械制造与自动化. 2025(02): 215-220 .
    3. 张铁聪,冯锦鹏,赵彦成,钮涛,刘国锋. 基于表面灰度和纹理识别的TDS智能干选机刮板机异常状态检测方法. 工矿自动化. 2024(S1): 134-138 .
    4. 陈俊英,黄汉涛,李朝阳. 特征增强和度量优化的钢材表面缺陷检测. 激光与光电子学进展. 2024(24): 92-101 .
    5. 张平,佟昆宏,王学珍. 基于改进U-net网络的液压管路分割方法. 电子测量与仪器学报. 2023(01): 123-129 .
    6. 章斌,卢洪义,刘舜,桑豆豆,杨禹成. 发动机部件CT图像特征提取与区域生长算法. 兵工学报. 2023(04): 1171-1180 .
    7. 胡春安,王丰奇,朱东林. 改进麻雀搜索算法及其在红外图像分割的应用. 红外技术. 2023(06): 605-612 . 本站查看
    8. 陈华伟,谢志辉,姜盼. 基于红外监测技术的热缺陷分类及典型故障分析. 机电工程技术. 2023(06): 50-53 .
    9. 彭道刚,周威仪,葛明,陈晨,潘俊臻. 发电厂智能巡检机器人关键技术及应用发展趋势. 自动化仪表. 2023(07): 1-7 .
    10. 王东升,王海龙,张芳,韩林芳,赵怡琳. 基于时序信息的红外图像缺陷信息提取. 红外技术. 2022(06): 565-570 . 本站查看
    11. 韦德鹏,陈继清,罗天,张宏都,龙腾. 基于改进八方向Sobel算子的图像轮廓提取方法. 现代电子技术. 2022(19): 54-58 .

    Other cited types(16)

Catalog

    Article views (535) PDF downloads (222) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return