Citation: | XIONG Xiong, DUAN Yu, HU Mingdeng, LI Ruiping, DU Yu, MAO Jianhong. Reliability Research for 640×512 Miniaturized IR Detector Dewar Assembly[J]. Infrared Technology , 2022, 44(1): 89-95. |
[1] |
Philippe C. Sofradir MCT technology for space applications[C]//SPIE, 2009, 7330: 1-12.
|
[2] |
Marianne M, Xavier B, PhilippeT. IR detector dewar and assemblies for stringent environmental conditions[C]//SPIE, 2007, 6542: 1-11.
|
[3] |
Xavier B, Alain M, Michel V, et al. Reliability optimization for IR detectors with compact cryo-coolers[C]//SPIE, 2005, 5783: 187-198.
|
[4] |
张亚平, 朱颖峰, 刘湘云, 等. 基于材料放气特性的杜瓦真空失效时间研究[J]. 真空, 2016, 53(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201601017.htm
ZHANG Yaping, ZHU Yingfeng, LIU Xiangyun, et al. Dewar vacuum failure time based on the material outgassing characteristics[J]. Vacuum, 2016, 53(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201601017.htm
|
[5] |
王冠, 孟令伟, 张冬亮, 等. 640×512 15μm杜瓦真空失效的极限真空度研究[J]. 激光与红外, 2019, 49(12): 1442-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201912010.htm
WANG Guan, MENG Lingwei, ZHANG Dongliang, et al. Study on the limit vacuum degree of 640×512 15 μm dewar vacuum failure[J]. Laser & Infrared, 2019, 49(12): 1442-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201912010.htm
|
[6] |
孙闻, 俞君, 张磊. 微型红外探测器组件集成技术及其应用[J]. 红外, 2017, 38(4): 1-5. DOI: 10.3969/j.issn.1672-8785.2017.04.001
SUN Wen, YU Jun, ZHANG Lei. Integrated technology of miniature infrared detector assembly and its application[J]. Infrared, 2017, 38(4): 1-5. DOI: 10.3969/j.issn.1672-8785.2017.04.001
|
[7] |
中国兵器工业集团有限公司. 热像仪用多元金属杜瓦瓶通用规范[S].
GJB 8674-2015, 2016. China North Industries Group Corporation Limited. General specification of multi-lead metal dewar for thermal imaging systems[S]. GJB 8674-2015, 2016.
|
[8] |
黄一彬, 王英, 朱颖峰, 等. 红外探测器杜瓦封装多余物的衍射分析及控制[J]. 红外与激光工程, 2021, 50(3): 20200177. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202103011.htm
HUANG Yibin, WANG Ying, ZHU Yingfeng, et al. Diffraction analysis and control of remainders in infrared detector dewar packaging[J]. Infrared and Laser Engineering, 2021, 50(3): 20200177. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202103011.htm
|
[9] |
黄燕, 吴全信. 阿列尼乌斯模型在红外微型金属杜瓦的真空寿命试验研究中的应用[J]. 低温与超导, 2005, 33(2): 69-72. DOI: 10.3969/j.issn.1001-7100.2005.02.017
HUANG Yan, WU Quanxin. Application of Arrhenius model in vacuum life test research of infrared miniature metal dewar[J]. Cryogenicsand Superconductivity, 2005, 33(2): 69-72. DOI: 10.3969/j.issn.1001-7100.2005.02.017
|
[10] |
张亚平, 刘湘云. 红外微型杜瓦真空退化特性研究综述[J]. 红外, 2013, 34(2): 10-15. DOI: 10.3969/j.issn.1672-8785.2013.02.02
ZHANG Yaping, LIU Xiangyun. Review of vacuum degradation in infrared detector micro-dewar[J]. Infrared, 2013, 34(2): 10-15. DOI: 10.3969/j.issn.1672-8785.2013.02.02
|
[11] |
张亚平, 徐世春, 徐冬梅, 等. 快速评价微杜瓦真空寿命及应用[J]. 真空科学与技术学报, 2018, 38(7): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201807003.htm
ZHANG Yaping, XU Shichun, XU Dongmei, et al. Rapid prediction of longest holding-time of high-vacuum in micro-dewar: an experimental sudy[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(7): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201807003.htm
|
[12] |
WANG Yang, MENG Chao, MA Wei. Review of reliability research on infrared detector[C]//SPIE, 2021, 11763: 1-7.
|
[13] |
王洋, 张宏飞, 孟超, 等. InSb多元探测器玻璃杜瓦贮存寿命研究[J]. 航空兵器, 2020, 27(2): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202002013.htm
WANG Yang, ZHANG Hongfei, MENG Chao, et al. Study on the storage life of InSb multi-element detector glass dewar[J]. Aero Weaponry, 2020, 27(2): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202002013.htm
|
[14] |
林日东, 刘伟, 王冠, 等. 红外焦平面探测器杜瓦组件真空寿命分析[J]. 激光与红外, 2011, 41(7): 779-783. DOI: 10.3969/j.issn.1001-5078.2011.07.015
LIN Ridong, LIU Wei, WANG Guan, et al. Vacuum life analyse of infrared detector & dewar assembly[J]. Laser & Infrared, 2011, 41(7): 779-783. DOI: 10.3969/j.issn.1001-5078.2011.07.015
|
[1] | GUO Xuchen, FAN Yugang, JIANG Mingkai. Self-Ensembling Network Model and Its Hyperspectral Object Recognition Under Regularization Constraint[J]. Infrared Technology , 2025, 47(7): 823-832. |
[2] | NIE Genliang, CHENG Xiaohong, ZHOU Chao, HOU Dehua, LI Zhongyu. Three-dimensional Characterization of Road Aggregates Based on Thermal Infrared Depth Estimation[J]. Infrared Technology , 2024, 46(9): 1099-1105. |
[3] | XIA Yan. Research on 3D Target Recognition Algorithm Based on Infrared Features[J]. Infrared Technology , 2022, 44(11): 1161-1166. |
[4] | YANG Yanlong, XU Chao. Fusion Reconstruction Method for 3D Temperature Fields on the Human Body Surface[J]. Infrared Technology , 2022, 44(1): 33-40. |
[5] | WEI Jiali, QU Huidong, WANG Yongxian, ZHU Junqing, GUAN Yingjun. Research Review of 3D Cameras Based on Time-of-Flight Method[J]. Infrared Technology , 2021, 43(1): 60-67. |
[6] | WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271. |
[7] | ZHONG Hai, WANG Meng, WANG Qi. IR Technique Investigation of Boundary Layer Transition Measurement in Flight Tests[J]. Infrared Technology , 2019, 41(8): 712-718. |
[8] | YAN Xinjie, LIN Yu, LI Jian, ZHANG Jin, LIN Dandan. Compensation Model of MEMS Gyroscope's Null Shift Based on Temperature Constraint Algorithm[J]. Infrared Technology , 2017, 39(1): 73-80. |
[9] | CHEN Si, WANG Jing-dong, LI Peng. A Stereo Matching Algorithm Based on Multi-directional Constraints[J]. Infrared Technology , 2011, 33(11): 639-645. DOI: 10.3969/j.issn.1001-8891.2011.11.005 |
[10] | CAO Yi, WANG Jing-dong, LI Peng. Dynamic Programming Stereo Matching Algorithm Based on Vertical Constraint[J]. Infrared Technology , 2008, 30(12): 722-726. DOI: 10.3969/j.issn.1001-8891.2008.12.010 |
1. |
杨宏韬,李鑫,程云龙,李秀兰,张鹏,白昊天. 基于DoN-LMedS的焊道点云分割方法. 组合机床与自动化加工技术. 2025(03): 209-213+218 .
![]() | |
2. |
冯斌. 大流量浆体长输管道机械撞击损伤检测方法. 机械制造与自动化. 2025(02): 215-220 .
![]() | |
3. |
张铁聪,冯锦鹏,赵彦成,钮涛,刘国锋. 基于表面灰度和纹理识别的TDS智能干选机刮板机异常状态检测方法. 工矿自动化. 2024(S1): 134-138 .
![]() | |
4. |
陈俊英,黄汉涛,李朝阳. 特征增强和度量优化的钢材表面缺陷检测. 激光与光电子学进展. 2024(24): 92-101 .
![]() | |
5. |
张平,佟昆宏,王学珍. 基于改进U-net网络的液压管路分割方法. 电子测量与仪器学报. 2023(01): 123-129 .
![]() | |
6. |
章斌,卢洪义,刘舜,桑豆豆,杨禹成. 发动机部件CT图像特征提取与区域生长算法. 兵工学报. 2023(04): 1171-1180 .
![]() | |
7. |
胡春安,王丰奇,朱东林. 改进麻雀搜索算法及其在红外图像分割的应用. 红外技术. 2023(06): 605-612 .
![]() | |
8. |
陈华伟,谢志辉,姜盼. 基于红外监测技术的热缺陷分类及典型故障分析. 机电工程技术. 2023(06): 50-53 .
![]() | |
9. |
彭道刚,周威仪,葛明,陈晨,潘俊臻. 发电厂智能巡检机器人关键技术及应用发展趋势. 自动化仪表. 2023(07): 1-7 .
![]() | |
10. |
王东升,王海龙,张芳,韩林芳,赵怡琳. 基于时序信息的红外图像缺陷信息提取. 红外技术. 2022(06): 565-570 .
![]() | |
11. |
韦德鹏,陈继清,罗天,张宏都,龙腾. 基于改进八方向Sobel算子的图像轮廓提取方法. 现代电子技术. 2022(19): 54-58 .
![]() |