YANG Yanlong, XU Chao. Fusion Reconstruction Method for 3D Temperature Fields on the Human Body Surface[J]. Infrared Technology , 2022, 44(1): 33-40.
Citation: YANG Yanlong, XU Chao. Fusion Reconstruction Method for 3D Temperature Fields on the Human Body Surface[J]. Infrared Technology , 2022, 44(1): 33-40.

Fusion Reconstruction Method for 3D Temperature Fields on the Human Body Surface

More Information
  • Received Date: February 27, 2020
  • Revised Date: May 19, 2020
  • Reconstruction of 3D temperature fields on the human body surface can provide reliable data for a number of human medical analyses, including diagnoses. Based on the limitations of infrared imaging, such as poor temperature measurement accuracy, insufficient imaging resolution, and poor display effects, the reliability of the 3D temperature field collected using infrared imaging is low. To overcome these problems, we propose a fusion reconstruction method for 3D temperature fields on the human body surface. First, the blackbody temperature measurement and calibration method is used to correct the errors in the temperature measurement results of an infrared thermal imager. Second, contrast enhancement processing is applied. Third, super-resolution processing is used to make the infrared images match the 3D data in terms of spatial resolution. Finally, in the data fusion stage, based on the fact that the target feature points extracted from different images correspond to the same position in the space, the system structure parameters obtained through calibration are corrected. Experimental results demonstrate that the temperature error of the 3D temperature field is less than 0.26℃, the 3D distribution of the temperature field is improved, and the display effect is enhanced.
  • [1]
    陈丙瑞. 红外热像仪在医学中的应用与测量误差的研究[D]. 秦皇岛: 燕山大学, 2009.

    CHEN Bingrui. Application of Infrared Thermal Imager in Medicine and Research on Measurement Error[D]. Qinhuangdao: Yanshan University, 2009.
    [2]
    Kennedy D A, Lee T, Seely D. A comparative review of thermography as a breast cancer screening technique[J]. Integrative Cancer Therapies, 2009, 8(1): 9-16. DOI: 10.1177/1534735408326171
    [3]
    YANG R, CHEN Y. Design of a 3-D infrared imaging system using structured light[J]. IEEE Trans. on Instrumentation and Measurement, 2011, 60(2): 608-617. DOI: 10.1109/TIM.2010.2051614
    [4]
    Vidas S, Lakemond R, Denman S, et al. A mask-based approach for the geometric calibration of thermal-infrared cameras[J]. IEEE Trans. on Instrumentation and Measurement, 2012, 61(6): 1625-1635. DOI: 10.1109/TIM.2012.2182851
    [5]
    Rangel J, Soldan S, Kroll A. 3D thermal imaging: fusion of thermography and depth cameras[C/OL]//International Conference on Quantitative Infrared Thermography, [2014-01-20], 2014: https://www.researchgate.net/publication/269984262_3D_Thermal_Imaging_Fusion_of_Thermography_and_Depth_Cameras.
    [6]
    AN Y, ZHAG S. High-resolution, real-time simultaneous 3D surface geometry and temperature measurement[J]. Optics Express, 2016, 24(13): 14552-14563. DOI: 10.1364/OE.24.014552
    [7]
    CAO Y, XU B, YE Z, et al. Depth and thermal sensor fusion to enhance 3D thermographic reconstruction[J]. Optics Express, 2018, 26(7): 8179-8193. DOI: 10.1364/OE.26.008179
    [8]
    XU B, YE Z, WANG F, et al. On-the-fly extrinsic calibration of multimodal sensing system for fast 3D thermographic scanning[J]. Applied Optics, 2019, 58(12): 3238-3246. DOI: 10.1364/AO.58.003238
    [9]
    Schramm S, Rangel J, Kroll A, et al. Data fusion for 3D thermal imaging using depth and stereo camera for robust self-localization[C]//Static Analysis Symposium, 2018: 1-6.
    [10]
    张晓晔, 徐超, 何利民, 等. 非制冷红外热像仪人体表面温度场测量及误差修正[J]. 红外与激光工程, 2016, 45(10): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610006.htm

    ZHANG Xiaoye, XU Chao, HE Limin, et al. Measuring and error correcting of human surface with uncooled infrared camera[J]. Infrared and Laser Engineering, 2016, 45(10): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610006.htm
    [11]
    Zuiderveld K. Contrast limited adaptive histogram equalization[C]// Graphics gems IV, 1994: 474-485.
    [12]
    DONG C, Loy C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307.
    [13]
    Polyanskiy M N, Refractive index database[EB/OL]. [2019-10-18]. https://refractiveindex.info.
  • Related Articles

    [1]ZHANG Yingxu, LI Peiyuan, SI Yang, YAO Liangliang, ZHAO Peng, YUAN Shouzhang, YIN Hui, LI Xiongjun. MTF Testing of Infrared Focal Plane Array Based on Microstructures[J]. Infrared Technology , 2024, 46(7): 821-825.
    [2]TANG Kebin, LI Shan, LI Chuchen, MAO Ke, ZHANG Shunguan, ZENG Shaoyu. Antireflection Performance of the Conical Microstructures of Germanium Substrate in Long-Wavelength Infrared[J]. Infrared Technology , 2024, 46(1): 36-42.
    [3]WANG Kun, SHI Yong, LIU Chichi, XIE Yi, CAI Ping, KONG Songtao. A Review of Infrared Spectrum Modeling Based on Convolutional Neural Networks[J]. Infrared Technology , 2021, 43(8): 757-765.
    [4]WU Yujie, CHANG Ming, YANG Ruobing, HU Mengxuan, DONG Yan, YU Hongwei. Three-step Infrared Spectrum of Dacron Crystal Structure[J]. Infrared Technology , 2020, 42(6): 589-597.
    [5]LI Li, WANG Zhenzhou, SHI Peng, LIU Ziwei, SONG Yahuan, YU Hongwei. Infrared Spectroscopy Study of Thiourea VN-C=S[J]. Infrared Technology , 2017, 39(1): 95-102.
    [6]XU Zhi, LI Rui, GUO Qian, CAO Shu-min. Discussion about the Test of Aragonite Crystal Orientation by IR Spectral Reflection[J]. Infrared Technology , 2015, (2): 171-175.
    [7]The Characteristic Identification Method Based on Infrared Spectra of Tea[J]. Infrared Technology , 2013, (5): 304-308.
    [8]WANG Duo, XU Ze-bin, SUN meng, CAO Shu-min. Study on the IR Spectrum of Jasper of Different Origin[J]. Infrared Technology , 2009, 31(12): 698-701,707. DOI: 10.3969/j.issn.1001-8891.2009.12.005
    [9]Infrared Spectrum in the Study of the Jadeite[J]. Infrared Technology , 2008, 30(7): 425-428. DOI: 10.3969/j.issn.1001-8891.2008.07.015
    [10]The Preparation and Characterization of Micron Expansible Graphite[J]. Infrared Technology , 2005, 27(1): 79-82. DOI: 10.3969/j.issn.1001-8891.2005.01.019
  • Cited by

    Periodical cited type(5)

    1. 吴耀炜,龚建周,陈智勇,袁海威,林颖怡. 一种DeepLabv3+结构改进的高分遥感影像红树林边界识别方法. 广州大学学报(自然科学版). 2024(03): 93-104 .
    2. 刘思言,王春月,赵宇恒,秦磊,付璐,于海洋. 吉林一号卫星在查干湖国家级自然保护区人类活动监测中的应用. 卫星应用. 2023(03): 55-60 .
    3. 曹宏徙. 基于神经网络的多源遥感图像语义分割系统设计. 信息记录材料. 2023(05): 189-191+195 .
    4. 冯一军,陈霖,梁雄乾,王志虎,王鑫. 无人机智能遥感信息提取技术研究与应用. 计算机测量与控制. 2023(06): 231-237 .
    5. 田普光. 基于对象上下文信息的无人机影像建筑物提取. 测绘与空间地理信息. 2023(11): 70-73+77 .

    Other cited types(8)

Catalog

    Article views (260) PDF downloads (69) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return