YANG Yanlong, XU Chao. Fusion Reconstruction Method for 3D Temperature Fields on the Human Body Surface[J]. Infrared Technology , 2022, 44(1): 33-40.
Citation: YANG Yanlong, XU Chao. Fusion Reconstruction Method for 3D Temperature Fields on the Human Body Surface[J]. Infrared Technology , 2022, 44(1): 33-40.

Fusion Reconstruction Method for 3D Temperature Fields on the Human Body Surface

More Information
  • Received Date: February 27, 2020
  • Revised Date: May 19, 2020
  • Reconstruction of 3D temperature fields on the human body surface can provide reliable data for a number of human medical analyses, including diagnoses. Based on the limitations of infrared imaging, such as poor temperature measurement accuracy, insufficient imaging resolution, and poor display effects, the reliability of the 3D temperature field collected using infrared imaging is low. To overcome these problems, we propose a fusion reconstruction method for 3D temperature fields on the human body surface. First, the blackbody temperature measurement and calibration method is used to correct the errors in the temperature measurement results of an infrared thermal imager. Second, contrast enhancement processing is applied. Third, super-resolution processing is used to make the infrared images match the 3D data in terms of spatial resolution. Finally, in the data fusion stage, based on the fact that the target feature points extracted from different images correspond to the same position in the space, the system structure parameters obtained through calibration are corrected. Experimental results demonstrate that the temperature error of the 3D temperature field is less than 0.26℃, the 3D distribution of the temperature field is improved, and the display effect is enhanced.
  • [1]
    陈丙瑞. 红外热像仪在医学中的应用与测量误差的研究[D]. 秦皇岛: 燕山大学, 2009.

    CHEN Bingrui. Application of Infrared Thermal Imager in Medicine and Research on Measurement Error[D]. Qinhuangdao: Yanshan University, 2009.
    [2]
    Kennedy D A, Lee T, Seely D. A comparative review of thermography as a breast cancer screening technique[J]. Integrative Cancer Therapies, 2009, 8(1): 9-16. DOI: 10.1177/1534735408326171
    [3]
    YANG R, CHEN Y. Design of a 3-D infrared imaging system using structured light[J]. IEEE Trans. on Instrumentation and Measurement, 2011, 60(2): 608-617. DOI: 10.1109/TIM.2010.2051614
    [4]
    Vidas S, Lakemond R, Denman S, et al. A mask-based approach for the geometric calibration of thermal-infrared cameras[J]. IEEE Trans. on Instrumentation and Measurement, 2012, 61(6): 1625-1635. DOI: 10.1109/TIM.2012.2182851
    [5]
    Rangel J, Soldan S, Kroll A. 3D thermal imaging: fusion of thermography and depth cameras[C/OL]//International Conference on Quantitative Infrared Thermography, [2014-01-20], 2014: https://www.researchgate.net/publication/269984262_3D_Thermal_Imaging_Fusion_of_Thermography_and_Depth_Cameras.
    [6]
    AN Y, ZHAG S. High-resolution, real-time simultaneous 3D surface geometry and temperature measurement[J]. Optics Express, 2016, 24(13): 14552-14563. DOI: 10.1364/OE.24.014552
    [7]
    CAO Y, XU B, YE Z, et al. Depth and thermal sensor fusion to enhance 3D thermographic reconstruction[J]. Optics Express, 2018, 26(7): 8179-8193. DOI: 10.1364/OE.26.008179
    [8]
    XU B, YE Z, WANG F, et al. On-the-fly extrinsic calibration of multimodal sensing system for fast 3D thermographic scanning[J]. Applied Optics, 2019, 58(12): 3238-3246. DOI: 10.1364/AO.58.003238
    [9]
    Schramm S, Rangel J, Kroll A, et al. Data fusion for 3D thermal imaging using depth and stereo camera for robust self-localization[C]//Static Analysis Symposium, 2018: 1-6.
    [10]
    张晓晔, 徐超, 何利民, 等. 非制冷红外热像仪人体表面温度场测量及误差修正[J]. 红外与激光工程, 2016, 45(10): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610006.htm

    ZHANG Xiaoye, XU Chao, HE Limin, et al. Measuring and error correcting of human surface with uncooled infrared camera[J]. Infrared and Laser Engineering, 2016, 45(10): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610006.htm
    [11]
    Zuiderveld K. Contrast limited adaptive histogram equalization[C]// Graphics gems IV, 1994: 474-485.
    [12]
    DONG C, Loy C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307.
    [13]
    Polyanskiy M N, Refractive index database[EB/OL]. [2019-10-18]. https://refractiveindex.info.
  • Related Articles

    [1]MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375.
    [2]LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277.
    [3]YANG Dong, SHEN Jun, GAO Kaicong, LENG Chongqian, NIE Changbin, ZHANG Zhisheng. Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition[J]. Infrared Technology , 2023, 45(6): 559-566.
    [4]LEI Zengqiang, XU Huiyong, CHENG Gang, SHEN Liangji, CHEN Zhixue. Design of Readout Circuit of Incremental Focusing Encoder Based on CPLD[J]. Infrared Technology , 2020, 42(11): 1037-1041.
    [5]LI Rujie, TANG Libin, ZHANG Yuping, ZHAO Qing. Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors[J]. Infrared Technology , 2020, 42(5): 405-419.
    [6]ZHANG Yuping, TANG Libin. Research Progress in Photodetectors Based on Topological Insulators[J]. Infrared Technology , 2020, 42(1): 1-9.
    [7]GAO Run, NIU Chunhui, LI Xiaoying, LYU Yong. Determination Methods and Development Status of Photoelectric Detector Damaged by Strong Laser[J]. Infrared Technology , 2016, 38(8): 636-642.
    [8]KANG Bing-xin, LI Yu, BAI Pi-ji, LIU Hui-ping, WANG Bo. Design of A Novel Current Mirroring Integration Readout Integrated Circuit for Quantum Well Infrared Photodetectors[J]. Infrared Technology , 2012, 34(2): 95-98. DOI: 10.3969/j.issn.1001-8891.2012.02.007
    [9]WANG Yong-pan, GUO Fang-min. Wide Dynamic Range Readout Circuit Design on High Sensitivity Quantum Dot-in-Well Photodetector[J]. Infrared Technology , 2011, 33(6): 336-339. DOI: 10.3969/j.issn.1001-8891.2011.06.006
    [10]ZHAN Guo-zhong, GUO Fang-min, HUANG Jing, ZHU Rong-jing. Research on Control Circuit with Tunable Parameters for Photodetector Readout Circuit[J]. Infrared Technology , 2008, 30(8): 485-488. DOI: 10.3969/j.issn.1001-8891.2008.08.014
  • Cited by

    Periodical cited type(2)

    1. 仝淅哲,申钧. 光导型石墨烯探测器暗电流抑制电路研究. 红外. 2025(02): 1-12 .
    2. 李世龙,焦岗成. 旋涂法制备石墨烯光阴极与测试分析. 红外技术. 2024(12): 1459-1463 . 本站查看

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return