LI Mingchao, YAN Kuan, ZHANG Cong, HU Jiwei, OU Kai, CHEN Xubing. High-precision IR Radiation Temperature Measurement Device for Laser Soldering Temperature Measurement[J]. Infrared Technology , 2025, 47(1): 108-114.
Citation: LI Mingchao, YAN Kuan, ZHANG Cong, HU Jiwei, OU Kai, CHEN Xubing. High-precision IR Radiation Temperature Measurement Device for Laser Soldering Temperature Measurement[J]. Infrared Technology , 2025, 47(1): 108-114.

High-precision IR Radiation Temperature Measurement Device for Laser Soldering Temperature Measurement

More Information
  • Received Date: October 11, 2023
  • Revised Date: December 19, 2023
  • In the laser soldering process, real-time measurement of the solder joint temperature and adjustment of the output power of the semiconductor laser are crucial for ensuring welding quality. To avoid faults such as solder scorching, virtual soldering, and false soldering caused by excessive temperature measurement errors or slow measurement speeds, a high-precision IR radiation temperature measurement device is designed. First, the principles of IR radiation temperature measurement are introduced, and the design method of the IR radiation signal conversion circuit is explained. Second, the primary signal processing method used in this study, which is a Butterworth-type infinite impulse response filter, is introduced. Finally, the performance of the device is validated through experimental analysis. The experiments demonstrate that the IR radiation temperature measurement device designed in this study is suitable for non-contact measurement of solder joint temperature in laser soldering, with a maximum error of 2℃ within the test range of 70-260℃ in a standard blackbody furnace. During the laser soldering process, the highest temperature error is less than 0.6%, making it widely applicable to the field of laser soldering.

  • [1]
    张丽丽, 孙树峰, 王茜, 等. 激光微纳连接技术研究进展[J]. 激光与光电子学进展, 2022, 59(3): 0300003.

    ZHANG Lili, SUN Shufeng, WANG Xi, et al. Research progress of laser micro-nano connection technology[J]. Laser Optoelectronics Progress, 2022, 59(3): 0300003.
    [2]
    Adawiyah M A R, Syafiq H, Ammar M D, et al. The interfacial reaction between Sn-Ag-Cu (SAC)/Cu during laser soldering[J]. Lasers in Engineering, 2022(6): 51.
    [3]
    Alharbi A M, Othman M I A, Abd-Elaziz E M. 2-D analysis of generalized thermoelastic porous medium under the effect of laser pulse and micro temperature[J]. International Journal of Structural Stability and Dynamics, 2021, 21(9): 2150126. DOI: 10.1142/S0219455421501261
    [4]
    Kim J O, Jung J P, Lee J H, et al. Effects of laser parameters on the characteristics of a Sn-3.5 wt. % Ag solder joint[J]. Metals & Materials International, 2009, 15(1): 119-123.
    [5]
    HE Q, WEI H, CHEN J S, et al. Analysis of hot cracking during lap joint laser welding processes using the melting state-based thermomechanical modeling approach[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94: 4373-4386. DOI: 10.1007/s00170-017-1157-5
    [6]
    Schmidt J, Rutz F, Wrl A, et al. Low dark current in mid-infrared type-II superlattice heterojunction photodiodes[J]. Infrared Physics & Technology, 2017, 85: 378-381.
    [7]
    Torregrosa Penalva G, Asensio-López A, Ortega-González F, et al. PAE improvement and compensation of small‐signal gain drift due to temperature on power amplifiers through active biasing[J]. Microwave and Optical Technology Letters, 2003, 38(5): 389-392. DOI: 10.1002/mop.11069
    [8]
    Vincent G, Guy L, Philippe R, et al. Improving the power line communication signal-to-noise ratio during a resistive load commutation[J]. Journal of Communications, 2009, 4(2): 126-132.
    [9]
    Lee J M, Choi Y, Lee J R. Laser structural training, artificial intelligence-based acoustic emission localization and structural/noise signal distinguishment in a thick FCEV fuel tank[J]. International Journal of Hydrogen Energy, 2022(6): 47.
    [10]
    Mahata R MD. Optimal design of fractional order low pass Butterworth filter with accurate magnitude response[J]. Digital Signal Processing, 2018, 72: 96-114.
    [11]
    张立东, 苗长云, 厉振宇, 等. 带式输送机本质安全型红外测温仪[J]. 红外技术, 2021, 43(1): 89-95. http://hwjs.nvir.cn/cn/article/id/d041ffaf-1f80-4758-94e7-df6e824d80e6

    ZHANG Lidong, MIAO Changyun, LI Zhenyu, et al. Intrinsically safe infrared thermometer for Belt Conveyors[J]. Infrared Technology, 2021, 43(1): 89-95. http://hwjs.nvir.cn/cn/article/id/d041ffaf-1f80-4758-94e7-df6e824d80e6
    [12]
    Colaizzi P D, OShaughnessy Susan A, Evett S R. Calibration and tests of commercial wireless infrared thermometers[J]. Applied Engineering in Agriculture, 2018, 34(4): 647-658.
    [13]
    Montambaux G. Generalized Stefan–Boltzmann Law[J]. Foundations of Physics, 2018, 48(4): 395-410.
    [14]
    Cuenca J, Sobrino J A. Experimental measurements for studying angular and spectral variation of thermal infrared emissivity[J]. Applied Optics, 2004, 43(23): 4598-4602.
    [15]
    邵秀梅, 龚海梅, 李雪, 等. 高性能短波红外InGaAs焦平面探测器研究进展[J]. 红外技术, 2016, 38(8): 629-635. http://hwjs.nvir.cn/article/id/hwjs201608001

    SHAO Xiumei, GONG Haimei, LI Xue, et al. Developments of high performance short-wave infrared InGaAs focal plane detectors[J]. Infrared Technology, 2016, 38(8): 629-635. http://hwjs.nvir.cn/article/id/hwjs201608001
    [16]
    Colaizzi P D, O′ Shaughnessy Susan A, Evett S R. Calibration and tests of commercial wireless infrared thermometers[J]. Applied Engineering in Agriculture, 2018, 34(4): 647-658.
    [17]
    苏玉辉, 龚晓霞, 雷胜琼, 等. 噪声作为红外探测器可靠性评价的探讨[J]. 红外技术, 2009, 31(9): 509-512. DOI: 10.3969/j.issn.1001-8891.2009.09.003

    SU Yuhui, GONG Xiaoxia, LEI Shengqiong, et al. Discussion of reliability evaluation on infrared photovoltaic detector by noise[J]. Infrared Technology, 2009, 31(9): 509-512. DOI: 10.3969/j.issn.1001-8891.2009.09.003
    [18]
    王长青, 李爱军, 王伟. Butterworth滤波器在飞行控制系统设计中的应用[J]. 飞行力学, 2009, 27(1): 74-76, 96.

    WANG Changqing, LI Aijun, WANG Wei. Application of butterworth filter to design of flight control systems[J]. Flight Dynamics, 2009, 27(1): 74-76, 96.
    [19]
    Chavan M S, Agarwala R A, Uplane M D. Design and implementation of digital FIR equiripple notch filter on ECG signal for removal of power line interference[J]. WSEAS Transactions on Signal Processing, 2008, 4(4): 221-230.
    [20]
    PAN D, JIANG Z, Maldague X, et al. Research on the influence of multiple interference factors on infrared temperature measurement[J]. IEEE Sensors Journal, 2021, 21: 10546-10555.
  • Related Articles

    [1]WEI Yongchao, LIU Qianqian, ZHU Hongchao, ZHU Zihan, LI Jin. Error Correction Algorithm of High Precision Temperature Measurement Based on EACN Model[J]. Infrared Technology , 2024, 46(7): 843-852.
    [2]ZHANG Jiahong, JIA Zhuohang, GUO Liang, PENG Bo, WANG Weicheng. Thermal Design and Simulation Verification of High-precision Integrated Star Sensor in Near-Earth Orbit[J]. Infrared Technology , 2024, 46(4): 400-405.
    [3]ZHAI Pan, WANG Ping. Application of the Adaptive Wiener Filter in Infrared Image Denoising for Molten Steel[J]. Infrared Technology , 2021, 43(7): 665-669.
    [4]HUANG Zhangbin, GUAN Liu, LI Xiaoxia, FENG Yunsong. Numerical Simulation of Radiation Characteristics of Aircraft Exhaust Systems with Different Nozzles[J]. Infrared Technology , 2021, 43(6): 587-591.
    [5]LIU Junming, LI Lijuan, WANG Chaolin, DUAN Meng. Response Characteristics of an InSb FPA Detector using Above-band Pulsed-laser Jamming[J]. Infrared Technology , 2021, 43(5): 478-482.
    [6]ZHANG Peng, DONG Jie, HAN Shunli, WU Bin, CAO Qiantao. High Responsivity Terahertz Detector Based on Seebeck Effect[J]. Infrared Technology , 2017, 39(8): 761-765.
    [7]TANG Lei, WU Haibin, CANG Yajun, FENG Junsheng, YU Longbao, JIANG Shan, ZHAO Xiaohu. Application Studying of Infrared Radiation Temperature Measurement on the Tubular Industrial Furnace[J]. Infrared Technology , 2016, 38(7): 612-616.
    [8]LIN Qing-song, WANG Jun-xiao, YAO Yu-fei, LIU Yan-bing. High Precision Oscillating Mirror Servo system Based on New Repetitive Controller[J]. Infrared Technology , 2010, 32(1): 29-32. DOI: 10.3969/j.issn.1001-8891.2010.01.007
    [9]Summary on the Infrared Thermal Imaging Temperature Measurement Technology and Its Application[J]. Infrared Technology , 2003, 25(1): 96-98. DOI: 10.3969/j.issn.1001-8891.2003.01.024
    [10]Finite Impulse Response Digital Filters in the Signal/Noise Testsets of Image Intensifiers[J]. Infrared Technology , 2002, 24(4): 12-15. DOI: 10.3969/j.issn.1001-8891.2002.04.004
  • Cited by

    Periodical cited type(8)

    1. 李荣幸,郭杰,许方宇,史小充. 基于曲面差值与噪声的红外探测器盲元检测法. 激光与光电子学进展. 2025(07): 159-164 .
    2. 赵雯昕,赖雪峰,夏昱成,李素钧,周金梅. 红外焦平面探测器复合条件工作点闪元标定方法. 光子学报. 2024(02): 19-31 .
    3. 陈羽,段海龙,陈永鹏,周晓琳,张汉辉. 一种非制冷红外焦平面探测器图像清晰化设计与仿真. 新技术新工艺. 2023(08): 31-34 .
    4. 冯娟,冀松,王艳. 红外遥感地理图像的盲元块补偿方法. 激光杂志. 2022(07): 90-94 .
    5. 宋雪冬,马英超,周琦,练达,余路伟,毛晓楠. 短波红外相机实时坏像元检测与补偿方法. 光子学报. 2022(09): 309-320 .
    6. 蔡宁静,曾祥忠,王波. EBCMOS相机盲元检测方法的研究. 应用光学. 2021(01): 137-142 .
    7. 孙超,张洪文,王沛,李军. 中波红外相机盲元的实时动态检测与补偿方法. 红外技术. 2021(09): 869-875 . 本站查看
    8. 丁荣莉,李杰,谢宝蓉,刘艳丽,王路. 基于红外遥感图像的舰船目标检测方法. 光学与光电技术. 2021(06): 24-33 .

    Other cited types(8)

Catalog

    Article views (47) PDF downloads (16) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return