HUANG Zhangbin, GUAN Liu, LI Xiaoxia, FENG Yunsong. Numerical Simulation of Radiation Characteristics of Aircraft Exhaust Systems with Different Nozzles[J]. Infrared Technology , 2021, 43(6): 587-591.
Citation: HUANG Zhangbin, GUAN Liu, LI Xiaoxia, FENG Yunsong. Numerical Simulation of Radiation Characteristics of Aircraft Exhaust Systems with Different Nozzles[J]. Infrared Technology , 2021, 43(6): 587-591.

Numerical Simulation of Radiation Characteristics of Aircraft Exhaust Systems with Different Nozzles

More Information
  • Received Date: September 22, 2020
  • Revised Date: November 02, 2020
  • The exhaust system is the most important infrared radiation source of an aircraft, and the shape of the nozzle contributes to the infrared radiation characteristics of the exhaust system. Three types of 3D nozzles were built, and the temperature field of the plume was simulated using ANSYS14.5. Then, the spectral infrared radiation characteristics of the plume were obtained using the single band Curtis-Godson (C-G) approximation method. The results show that under the same exit area, the core area of the S-shaped nozzle plume is minimum and is approximately 60% of the axisymmetric circular nozzle plume; in the rectangular nozzle wide edge detection surface, the infrared radiation of the dual rectangular nozzle is minimum, and among the three types of nozzles, the stealthy performance of the two-element rectangular S curved nozzle is the best, the two-element rectangular nozzle takes the second place, and the axial symmetrical circular nozzle is the worst.
  • [1]
    Aguiar P, Brett D, Brandon N P. Solid oxide fuel cell/gas turbine hybrid system analysis for high-altitude long-endurance unmanned aerial vehicles[J]. International Journal of Hydrogen Energy, 2008, 33(23): 7214-7223. DOI: 10.1016/j.ijhydene.2008.09.012
    [2]
    Suresh Patel, Christopher Blac. Statistical modeling of F/A-22 flight test Buffet data for probabilistic analysis[C]// Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics and Materials Conference, 2005: DOI: 10.2514/6.2005-2289.
    [3]
    Roblin A, Baudoux P E, Chervet P. UV missile-plume signature model[C]//Proc of SPIE, 2002, 4718: 344-355.
    [4]
    Bakker E J, Fair M L, Schleijpen H M A. Modeling multispectral imagery data with NIRATAM v3.1 and NPLUME v1.6[C]// Proceedings of SPIE, 1999, 3699: 80-91.
    [5]
    Watkins W R. Thermal background modeling and its use in science and technology[C]//Proceedings of SPIE, 1992, 1687: 84-106.
    [6]
    张海兴, 岳敏. 飞机红外辐射的理论计算[J]. 西安电子科技大学学报, 1997(1): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD701.012.htm

    ZHANG Haixing, YUE Min. Theoretical calculation of the IR radiation of an aeroplane[J]. Journal of XIDIAN University, 1997(1): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD701.012.htm
    [7]
    未军光, 杨青真, 李岳锋. 飞机发动机排气系统红外辐射强度数值仿真[J]. 计算机仿真, 2011, 28(4): 66-70. DOI: 10.3969/j.issn.1006-9348.2011.04.016

    WEI Junguang, YANG Qingzhen, LI Yuefeng. Numerical simulation of infrared radiation for a aroengine exhaust system[J]. Computer Simulation, 2011, 28(4): 66-70. DOI: 10.3969/j.issn.1006-9348.2011.04.016
    [8]
    冯云松, 李晓霞, 路远, 等. 矩形喷管外尾焰红外辐射特性的数值计算[J]. 兵工学报, 2013, 34(4): 437-442. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201304010.htm

    FENG Yunsong, LI Xiaoxia, LU Yuan, et al. Numerical calculation of infrared radiation characteristics of the exhaust plume outside a rectangular nozzle[J]. Acta Armamentalrii, 2013, 34(4): 437-442. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201304010.htm
    [9]
    冯云松, 杨华, 杨莉, 等. 宽高比对矩形喷管外尾焰红外辐射的影响[J]. 光电工程, 2012, 39(11): 49-54. DOI: 10.3969/j.issn.1003-501X.2012.11.008

    FENG Yunsong, YANG Hua, YANG Li, et al. Influence of aspect ratio on infrared radiation of the exhaust plume outside a rectangular nozzle[J]. Opto-Electronic Engineering, 2012, 39(11): 49-54. DOI: 10.3969/j.issn.1003-501X.2012.11.008
    [10]
    高翔, 杨青真, 施永强, 等. 出口形式对双S弯排气系统红外特性影响研究[J]. 红外与激光工程, 2015, 44(6): 1726-1732. DOI: 10.3969/j.issn.1007-2276.2015.06.009

    GAO Xiang, YANG Zhenqing, SHI Yongqiang, et al. Numerical simulation of radiation intensity of double S-shaped exhaust system with different outlet shapes[J]. Infrared and Laser Engineering, 2015, 44(6): 1726-1732. DOI: 10.3969/j.issn.1007-2276.2015.06.009
    [11]
    刘常春, 吉洪湖, 黄伟, 等. 一种双S弯二元喷管的红外辐射特性数值研究[J]. 航空动力学报, 2013, 28(7): 1482-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201307007.htm

    LIU Changchun, JI Honghu, HUANG Wei, et al. Numerical simulation on infrared radiation characteristics of serpentine 2-D nozzle[J]. Journal of Aerospace Power, 2013, 28(7): 1482-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201307007.htm
    [12]
    邓洪伟, 赵春生, 贾东兵, 等. 航空发动机喷管隐身修形设计技术分析[J]. 航空发动机, 2014, 40(2): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201402004.htm

    DENG Hongwei, ZHAO Chunsheng, JIA Dongbin, et al. Analysis of stealthy shape design technology for aeroengine exhaust nozzle[J]. Aeroengine, 2014, 40(2): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201402004.htm
    [13]
    李惠萍, 周起勃, 匡定波. 基于粒子系统和C-G法的尾焰红外模拟[J]. 红外与激光工程, 2008, 37: 601-603. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2008S2062.htm

    LI Huiping, ZHOU Qibo, KUANG Dingbo. Simulation of infrared radiance of aircraft plume[J]. Infrared and Laser Engineering, 2008, 37: 601-603. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2008S2062.htm
    [14]
    许爱华, 汪中贤, 于坚, 等. 高空高速无人机尾焰红外辐射特性计算研究[J]. 红外与激光工程, 2012, 41(7): 1700-1707. DOI: 10.3969/j.issn.1007-2276.2012.07.005

    XU Aihua, WANG Zhongxian, YU Jianxian, et al. Numerical simulation of infrared radiation characteristics for plume of the high-altitude and high-speed UAV[J]. Infrared and Laser Engineering, 2012, 41(7): 1700-1707. DOI: 10.3969/j.issn.1007-2276.2012.07.005
    [15]
    张建奇. 红外物理[M]. 西安: 西安电子科技大学出版社, 2013.

    ZHANG Jianqi. Infrared Physics[M]. Xi'an: Xidian University Press, 2013.
  • Related Articles

    [1]ZHANG Xuesong, WU Nan, WANG Feng, CHU Sisi, LI Dongze. Analysis of Detection Ability of Missile-Borne Infrared Detector to Interceptor[J]. Infrared Technology , 2024, 46(5): 599-607.
    [2]LEI Yongchang, LI Jianlin, DONG Wei, ZHOU Jiading, HOU Likun, QIAN Kunlun. Redundant Object Damage and Prevention Method for Infrared Detectors[J]. Infrared Technology , 2023, 45(7): 790-797.
    [3]DENG Wei, SUN Hongsheng, ZHU Yingfeng, XU Dongmei, LI Ran, HUANG Yibin. Development Status of the Flexible Thermal Link Coupling Between Cryocooler and Long Linear Infrared Detector[J]. Infrared Technology , 2020, 42(1): 10-18.
    [4]CHI Guochun, SUN Hao, WANG Liang, LIU Xiangde, RAO Qichao. The Analysis of Cooling Parameters of Infrared Detector Assembly[J]. Infrared Technology , 2019, 41(7): 683-688.
    [5]FENG Hongwei, LIU Yuanyuan, XIE Linbo. Algorithm Design and Implementation for Dual-band Infrared Combustible Gas Detector[J]. Infrared Technology , 2019, 41(3): 227-231.
    [6]YANG Xiaole, SHI Manli, LING Long. Design of the Key Driving and Signal Processing Circuit for Cooled Infrared Detector[J]. Infrared Technology , 2016, 38(7): 556-560.
    [7]LI Jia-kun, JIN Wei-qi, WANG Xia, JIN Ming-lei, DUN Xiong, CHEN Ji. Review of Gas Leak Infrared Imaging Detection Technology[J]. Infrared Technology , 2014, (7): 513-520.
    [8]CHU Jun-hao, MENG Xian-jian. A Ferroelectric Polymer of Polyvinylidene Fluoride for the Application of Infrared Detection[J]. Infrared Technology , 2014, (1): 1-9.
    [9]Fundamentals of p-on-n HgCdTe Infrared Detectors and Their Detectivity Calculations[J]. Infrared Technology , 2013, (5): 249-258.
    [10]Relatively Spectrum Response Detection of Infrared Detector in 1~3μm[J]. Infrared Technology , 2004, 26(2): 64-67. DOI: 10.3969/j.issn.1001-8891.2004.02.017

Catalog

    Article views (182) PDF downloads (40) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return