WANG Hao, WU Yize, WANG Tao. Infrared Detection of Near Surface Defects of Aeroengine Blade Based on Array Hot Air Excitation[J]. Infrared Technology , 2022, 44(10): 1112-1117.
Citation: WANG Hao, WU Yize, WANG Tao. Infrared Detection of Near Surface Defects of Aeroengine Blade Based on Array Hot Air Excitation[J]. Infrared Technology , 2022, 44(10): 1112-1117.

Infrared Detection of Near Surface Defects of Aeroengine Blade Based on Array Hot Air Excitation

More Information
  • Received Date: August 03, 2021
  • Revised Date: September 12, 2021
  • The three-dimensional curved structure, complex material properties and special cooling channels of the aeroengine blades have brought difficulties to the detection of the near surface defects of the blades. Aiming at the problem that the uneven heating of the thermal excitation source leads to poor detection of infrared heat maps and low defect recognition, an active infrared detection method based on array hot air excitation is proposed, and a set of adjustable array hot air infrared non-destructive testing experimental platform is improved and built. By designing a comparative experiment between array hot air excitation and local hot air excitation, and using the canny operator to identify the edge of defects, the advantages of the array hot air excitation active infrared detection method are proved. The temperature variation law of the cracked specimens under different materials is analyzed through experiments. The experimental results show that as the thermal diffusion coefficient increases, the earlier the temperature rise occurs, and the maximum surface temperature shows a downward trend. Through the use of testing experimental platform to detect the aeroengine blades, the temperature distribution law of thermal conductivity and thermal insulation defects is revealed; the thermal conductivity, thermal insulation, and two mixed types of defects are detected The rates reached 86.7%, 93.3%, and 90% respectively. It also shows that the array hot-air excitation infrared detection method can effectively detect the crack defects in the blades of the aeroengine.
  • [1]
    吕事桂, 刘学业. 红外热像检测技术的发展和研究现状[J]. 红外技术, 2018, 40(3): 214-219. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201803003.htm

    LYU Shigui, LIU Xueye. Development and research status of infrared thermal image detection technology[J]. Infrared Technology, 2018, 40(3): 214-219. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201803003.htm
    [2]
    魏嘉呈, 刘俊岩, 何林, 等. 红外热成像无损检测技术研究发展现状[J]. 哈尔滨理工大学学报, 2020, 25(2): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX202002010.htm

    WEI Jiacheng, LIU Junyan, HE Lin, et al. Recent progress in infrared thermal imaging nondestructive testing technology[J]. Journal of Harbin University of Science and Technology, 2020, 25(2): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX202002010.htm
    [3]
    习小文, 苏清风, 袁雅妮, 等. 超声红外热成像技术在航空发动机叶片裂纹的对比研究[J]. 红外技术, 2021, 43(2): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202102013.htm

    XI Xiaowen, SU Qingfeng, YUAN Yanni, et al. Comparative study of using ultrasonic infrared thermography for detecting aeroengine blade cracks[J]. Infrared Technology, 2021, 43(2): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202102013.htm
    [4]
    孙吉伟, 冯辅周, 张丽霞, 等. 涡流脉冲热像检测中金属疲劳裂纹的生热分析[J]. 红外技术, 2019, 41(4): 383-387. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201904014.htm

    SUN Jiwei, FENG Fuzhou, ZHANG Lixia, et al. Thermal analysis of metal fatigue cracks in eddy current pulsed thermography[J]. Infrared Technology, 2019, 41(4): 383-387. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201904014.htm
    [5]
    Selvathi D, NithillaI H, Akshay N. Image processing techniques for defect detection in metals using thermal images[C]//3rd International Conference on Trends in Electronics and Informatics(ICOEI), IEEE, 2019: 939-944.
    [6]
    高治峰, 董丽虹, 王海斗, 等. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202009022.htm

    GAO Zhifeng, DONG Lihong, WANG Haidou, et al. Research progress and prospect of vibrothermography in different defect types[J]. Materials Reports, 2020, 34(9): 9158-9163. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202009022.htm
    [7]
    Souridi P, Chrysafi A P, Athanasopoulos N, et al. Simple digital image processing applied to thermographic data for the detection of cracks via eddy current thermography[J]. Infrared Physics & Technology, 2019, 98: 174-186.
    [8]
    米浩, 杨明, 于磊, 等. 基于超声红外热成像的缺陷检测与定位研究[J]. 振动·测试与诊断, 2020, 40(1): 101-106, 205-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202001015.htm

    MI Hao, YANG Ming, YU Lei, et al. Defect detection and location of based on ultrasonic infrared thermal imaging[J]. Journal of Vibration Measurement & Diagnosis, 2020, 40(1): 101-106, 205-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202001015.htm
    [9]
    罗立, 王瀚艺. 基于超声红外热成像的复合材料表面裂纹识别[J]. 激光杂志, 2020, 41(12): 146-150. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202012032.htm

    LUO Li, WANG Hanyi. Surface crack identification of composite materials based on ultrasonic infrared thermal imaging[J]. Laser Journal, 2020, 41(12): 146-150. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202012032.htm
    [10]
    李科, 钟安彪, 李玉杰, 等. 基于热风激励的红外成像检测技术研究[J]. 激光与红外, 2016, 46(7): 823-826. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201607011.htm

    LI Ke, ZHONG Anbiao, LI Yujie, et al. Research on infrared imaging detection based on hot wind heating[J]. Laser & Infrared, 2016, 46(7): 823-826. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201607011.htm
    [11]
    康爽, 陈长征, 周勃, 等. 基于温度阈值风电叶片缺陷识别的红外检测研究[J]. 太阳能学报, 2020, 41(8): 337-341. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202008045.htm

    KANG Shuang, CHEN Changzheng, ZHOU Bo, et al. Research on infrared detection of wind turbine blade defect recognition based on temperature threshold[J]. Acta Energiae Solaris Sinica, 2020, 41(8): 337-341. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202008045.htm
    [12]
    杨正伟, 谢星宇, 李胤, 等. 激光扫描热成像无损检测关键参数影响分析[J]. 红外与激光工程, 2019, 48(11): 91-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201911015.htm

    YANG Zhengwei, XIE Xingyu, LI Yin, et al. Influence analysis of key parameters in laser scanning thermography nondestructive testing[J]. Infrared and Laser Engineering, 2019, 48(11): 91-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201911015.htm
    [13]
    唐庆菊, 刘俊岩, 王扬, 等. 基于模糊C均值聚类和Canny算子的红外图像边缘识别与缺陷定量检测[J]. 红外与激光工程, 2016, 45(9): 281-285. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201609042.htm

    TANG Qingju, LIU Junyan, WANG Yang, et al. Infrared image edge recognition and defect quantitative determination based on the algorithm of fuzzy C-means clustering and Canny operator[J]. Infrared and Laser Engineering, 2016, 45(9): 281-285. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201609042.htm
    [14]
    Ratsakou A, Skarlatos A, Reboud C, et al. Shape reconstruction of delamination defects using thermographic infrared signals based on an enhanced Canny approach[J]. Infrared Physics and Technology, 2020, 111: 103527.
    [15]
    王福斌, 孙海洋, TU Paul. 边缘扩展的皮带撕裂支持向量机视觉检测[J]. 中国机械工程, 2019, 30(4): 455-460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201904011.htm

    WANG Fubing, SUN Haiyang, TU Paul. Visual inspection for extended edge belt tearing based on SVM[J]. China Mechanical Engineering, 2019, 30(4): 455-460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201904011.htm
  • Related Articles

    [1]MOU Xingang, ZHU Tailong, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Lightweight Multiscale Downsampling Network[J]. Infrared Technology , 2024, 46(5): 501-509.
    [2]MOU Xingang, CUI Jian, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Full Convolutional Network[J]. Infrared Technology , 2022, 44(1): 21-27.
    [3]HUANG Yu, ZHANG Baohui, WU Jie, CHEN Yingyan, JI Li, WU Xudong, YU Shikong. Adaptive Multipoint Calibration Non-uniformity Correction Algorithm[J]. Infrared Technology , 2020, 42(7): 637-643.
    [4]ZHANG Long, DONG Feng, FU Yutian. Non-uniformity Correction for Infrared Image Using Neural Networks[J]. Infrared Technology , 2018, 40(2): 164-169.
    [5]TAN Dong-jie, ZHANG An. Non-uniformity Correction Based on Local Histogram Specification[J]. Infrared Technology , 2013, (6): 325-328.
    [6]Improved Algorithm of Neural Network Used in IR Image Non-uniformity Correction[J]. Infrared Technology , 2013, (4): 232-237.
    [7]HAN Kai-Liang, HE Chun-Fang. A Nonuniformity Correction Algorithm for IRFPAs Based on Two Points and It's Realization by DSP[J]. Infrared Technology , 2007, 29(9): 541-544. DOI: 10.3969/j.issn.1001-8891.2007.09.012
    [8]LIU Chan-lao, TAN Li-xun, LIU Wei-guo, LI Chun-yan. An Improve High Pass Filtering Algorithm for Nonuniformity Correction of Infrared Image[J]. Infrared Technology , 2006, 28(8): 439-442. DOI: 10.3969/j.issn.1001-8891.2006.08.002
    [9]Study on Non-uniformity Correction of Infrared Image[J]. Infrared Technology , 2002, 24(1): 1-3. DOI: 10.3969/j.issn.1001-8891.2002.01.001
    [10]LIU Zhi-cai, LI Zhi-guang, L(U) Zheng-wei. The Implementation of Digital Nonuniformity Correction for SPRITE Infrared Imager with C50[J]. Infrared Technology , 2000, 22(3): 1-3,11. DOI: 10.3969/j.issn.1001-8891.2000.03.001

Catalog

    Article views (215) PDF downloads (42) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return