ZHAO Yijian, WANG Qianqian, ZONG Yonghong, PENG Zhong, HU Biqiang. Variable Step Length Operating Range Evaluation Algorithm for Infrared Systems Based on MODTRAN[J]. Infrared Technology , 2021, 43(11): 1067-1072.
Citation: ZHAO Yijian, WANG Qianqian, ZONG Yonghong, PENG Zhong, HU Biqiang. Variable Step Length Operating Range Evaluation Algorithm for Infrared Systems Based on MODTRAN[J]. Infrared Technology , 2021, 43(11): 1067-1072.

Variable Step Length Operating Range Evaluation Algorithm for Infrared Systems Based on MODTRAN

More Information
  • Received Date: September 07, 2020
  • Revised Date: October 01, 2020
  • In the evaluation of the operating range of an infrared imaging detection system, the average atmospheric transmittance is used, which is also a function of the operating range. Therefore, the operating range must be calculated using iteration algorithm. A variable step length method for the operating range evaluation of point target detection is introduced. MODTRAN software is used to calculate the atmospheric average transmittance and sky background radiance. The number of pixels, signal-to-noise ratio, and modulation contrast under the set distance are calculated using the evaluation model to identify whether the minimum performance index required for target detection is satisfied, and consequently determine the maximum operating range. When the difference between the set value and real operating range is large, a large step length is adopted; when the difference is small, a small step length is used. Compared with the const step length method, the proposed algorithm can accelerate the calculation significantly while maintaining accuracy.
  • [1]
    R D小哈得逊. 红外系统原理[M]. 北京: 国防工业出版社, 1975.

    R D Hudson Jr. Infrared System Engineering[M]. John Wiley & Sons, 1969.
    [2]
    白廷柱, 金伟其. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2010.

    BAI Tingzhu, JIN Weiqi. Principle and Technology of Photoelectric Imaging[M]. Beijing: Beijing Institute of Technology Press, 2010.
    [3]
    姜宏滨. 用NETD表达的红外作用距离方程[J]. 光学与光电技术, 2003, 1(2): 40-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD200302011.htm

    JIANG Hongbin. An IR operating range equation expressed by NETD[J]. Optics & Optoelectronic Technology, 2003, 1(2): 40-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD200302011.htm
    [4]
    牟达, 韩红霞. 红外系统作用距离方程的比较与分析[J]. 长春理工大学学报: 自然科学版, 2012, 35(4): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201204003.htm

    MU Da, HAN Hongxia. Comparison and analysis for operating range equations of infrared system[J]. Journal of ChangchunUniversity of Science and Technology: Natural Science Edition, 2012, 35(4): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201204003.htm
    [5]
    邢强林, 黄惠明, 熊仁生, 等. 红外成像探测系统作用距离分析方法研究[J]. 光子学报, 2004, 33(7): 893-896. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200407031.htm

    XING Qianglin, HUANG Huiming, XIONG Rensheng, et al. Detectability analyzing of IR FPA tracking system[J]. Acta Photonica Sinica, 2004, 33(7): 893-896. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200407031.htm
    [6]
    申俊杰. 凝视型红外成像探测系统的作用距离分析与验证[J]. 电脑知识与技术, 2009, 5(26): 7553-7555. DOI: 10.3969/j.issn.1009-3044.2009.26.102

    SHEN Junjie. Analysis and validation of operating range of staring IR imaging detecting system[J]. Computer Knowledge and Technology, 2009, 5(26): 7553-7555. DOI: 10.3969/j.issn.1009-3044.2009.26.102
    [7]
    张广申, 毛征, 曲劲松, 等. 基于MODTRAN的电视跟踪系统作用距离仿真计算[J]. 兵工自动化, 2018, 37(10): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201810016.htm

    ZHANG Guangshen, MAO Zheng, QU Jinsong, et al. Simulation of operating distance of TV tracking system based on MODTRAN[J]. Ordnance Industry Automation, 2018, 37(10): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201810016.htm
    [8]
    赵煜, 吴平, 孙文芳. 红外系统作用距离实时计算系统[J]. 应用光学, 2014, 35(3): 515-519. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201403032.htm

    ZHAO Yu, WU Ping, SUN Wenfang. Real-time calculating system for operating distance of infrared system[J]. Journal of Applied Optics, 2014, 35(3): 515-519. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201403032.htm
    [9]
    王东, 赵威, 陈勇, 等. 天空背景红外辐射亮度测量及其对目标探测的影响分析[J]. 红外技术, 2015, 37(9): 774-777. http://hwjs.nvir.cn/article/id/hwjs201509013

    WANG Dong, ZHAO Wei, CHEN Yong, et al. Measurement of sky background infrared radiant intensity and analysis of its effect on target detection[J]. Infrared Technology, 2015, 37(9): 774-777. http://hwjs.nvir.cn/article/id/hwjs201509013
    [10]
    路大举, 杨锐, 张波, 等. 天空背景光学辐射特性测量[J]. 强激光与粒子束, 2013, 25(S1): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY2013S1013.htm

    LU Daju, YANG Rui, ZHANG Bo, et al. Measurement of sky background luminance characteristics[J]. High Power Laser and Particle Beams, 2013, 25(S1): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY2013S1013.htm
  • Related Articles

    [1]WU Wenfei, LI Zhengqiang, YAO Qian, ZHOU Shikai, XU Hua, CHEN Zhenting, JIANG Qifeng. Simplified Calculation Method of FY-3D Satellite MERSI-Ⅱ Thermal Infrared Channel Split-Window Simulation[J]. Infrared Technology , 2025, 47(4): 410-420.
    [2]ZHAO Li, YANG Guoqing, LI Zhou, CUI Tiecheng. Analysis and Example of Operating Range Calculation Method for Point Target in Infrared System[J]. Infrared Technology , 2022, 44(12): 1273-1277.
    [3]YANG Pengbo, LI Jie, CUI Wennan, ZHANG Tao. Variable Step Autofocus Design for Infrared Telescopes[J]. Infrared Technology , 2021, 43(3): 218-224.
    [4]HE Ping, WANG Yingying, YUE Shaohua. Operating Range of the Advanced Infrared Detector for the Stealth Aircraft[J]. Infrared Technology , 2020, 42(9): 899-904.
    [5]LIU Bingqi, YU Hao, YAN Zongqun, ZHANG Yu, CHEN Yichao, ZHANG Shuai. A Fast Calculation Model for Average Transmission of Oxygen A Absorption Band in Homogeneous Atmosphere[J]. Infrared Technology , 2018, 40(11): 1056-1060.
    [6]ZHAO Zhijun, XU Fangyu, WEI Chaoqun, YANG Kun. Study on Measurement Method for Total Infrared Atmospheric Transmittance[J]. Infrared Technology , 2018, 40(7): 718-722.
    [7]CHEN Fang-fang, GENG Rui, LYU Yong. Research on the Transmittance Model of Laser Infrared Atmospheric Transmission[J]. Infrared Technology , 2015, (6): 496-501.
    [8]ZHOU Guo-hui, LIU Xiang-wei, XU ji-wei. A Math Model of Calculate the Atmospheric Transmittance Of Infrared Radiation[J]. Infrared Technology , 2008, 30(6): 331-334. DOI: 10.3969/j.issn.1001-8891.2008.06.006
    [9]Operating Distance Equation for Infrared Point Target Detect System Based on Temperature Characteristic of Detectivity and Background Influence[J]. Infrared Technology , 2007, 29(6): 341-344. DOI: 10.3969/j.issn.1001-8891.2007.06.008
    [10]LIU Bo, ZHANG Bin, WANG Hai-yan. A New Method for Demarcating Acceptance Range of IRST[J]. Infrared Technology , 2006, 28(11): 633-635. DOI: 10.3969/j.issn.1001-8891.2006.11.004
  • Cited by

    Periodical cited type(5)

    1. 毕淳锴,张远辉,付铎. 基于多视角热像图序列的物体表面温度场重建. 计量学报. 2024(07): 997-1006 .
    2. 郑叶龙,李长勇,夏宁宁,李玲一,张国民,赵美蓉. 基于“十字”标志物的红外图像与三维点云融合方法. 天津大学学报(自然科学与工程技术版). 2024(10): 1090-1099 .
    3. 倪成玉,张远辉,朱俊江,付铎. 热像仪下基于几何约束的空间温度场重建. 光电工程. 2024(11): 60-73 .
    4. 齐恩铁,姜春雨,赵立英,孙海峰. 基于红外边界约束的点云目标识别系统. 激光与红外. 2024(12): 1894-1899 .
    5. 王洁,伍弘,詹仲强,李金良,金铭,陈文涛. 基于Lazy Snapping混合模拟退火算法的高压开关柜温度场红外三维图像重建仿真. 红外技术. 2023(03): 276-281 . 本站查看

    Other cited types(2)

Catalog

    Article views (246) PDF downloads (57) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return