ZHAO Li, YANG Guoqing, LI Zhou, CUI Tiecheng. Analysis and Example of Operating Range Calculation Method for Point Target in Infrared System[J]. Infrared Technology , 2022, 44(12): 1273-1277.
Citation: ZHAO Li, YANG Guoqing, LI Zhou, CUI Tiecheng. Analysis and Example of Operating Range Calculation Method for Point Target in Infrared System[J]. Infrared Technology , 2022, 44(12): 1273-1277.

Analysis and Example of Operating Range Calculation Method for Point Target in Infrared System

More Information
  • Received Date: April 24, 2021
  • Revised Date: September 08, 2021
  • The operating range parameter of an infrared system is an important index for characterizing its imaging performance. At present, there are many methods to calculate the operating distance of infrared systems, but they all have their own applicability and limitations. It is necessary to consider the influence of various factors on the operating distance under different conditions. In this study, based on the detection energy, noise equivalent temperature difference (NETD), and contrast, we found limitations under different conditions. When the observation target was a human, the calculated operating distance based on the NETD model was 8.74 km, which is closer to field experimental data. When the observation target was an aircraft, the calculated operating distance based on the energy model was 32.04 km, which is also closer to field experimental data. These results show that, according to the different characteristics of the target, selecting the appropriate calculation method for the operating distance is helpful in improving the accuracy of the system operating distance estimation.
  • [1]
    王永仲. 现代军用光学技术[M]. 北京: 科学出版社, 2003.

    WANG Yongzhong. Modern Military Optical Technology[M]. Beijing: Science Press, 2003.
    [2]
    杨宜禾, 岳敏, 周维真. 红外系统[M]. 北京: 国防工业出版社, 1995.

    YANG Yihe, YUE Min, ZHOU Weizhen. Infrared System[M]. Beijing: National Defense Industry Press, 1995.
    [3]
    哈得逊 R D. 红外系统原理[M]. 北京: 国防工业出版社, 1975.

    Hudson R D. Principles of Infrared Systems[M]. Beijing: National Defense Industry Press, 1975.
    [4]
    郭晓东. 红外点目标探测系统的作用距离理论模型分析[J]. 红外, 2019, 40(7): 18-25. DOI: 10.3969/j.issn.1672-8785.2019.07.003

    GUO Xiaodong. Theoretical model analysis of operating range of infrared point target detection system[J]. Infrared, 2019, 40(7): 18-25. DOI: 10.3969/j.issn.1672-8785.2019.07.003
    [5]
    罗振莹, 白璐, 宁辉, 等. 基于NETD的红外探测系统作用距离分析[J]. 红外, 2017, 38(5): 27-30. DOI: 10.3969/j.issn.1672-8785.2017.05.005

    LUO Zhenying, BAI Lu, NING Hui, et al. Distance analysis of infrared detection system based on NETD[J]. Infrared, 2017, 38(5): 27-30 DOI: 10.3969/j.issn.1672-8785.2017.05.005
    [6]
    李希希, 张葆, 洪永丰. 红外系统对点源目标的作用距离估算模型[J]. 电光与控制, 2016, 23(3): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201603005.htm

    LI Xixi, ZHANG Bao, HONG Yongfeng. Effect distance estimation model of infrared system on point source target[J]. Electro-optics and Control, 2016, 23(3): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201603005.htm
    [7]
    苏䶮, 王前学, 周海渊, 等. 中波红外系统探测能力计算方法[J]. 价值工程, 2018, 37(25): 177-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201825083.htm

    SU Yan, WANG Qianxue, ZHOU Haiyuan, et al. Calculation method for detection capability of medium wave infrared system[J]. Value Engineering, 2018, 37(25): 177-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201825083.htm
    [8]
    孙明昭, 田超, 王佳笑. 不同大气条件下红外成像系统作用距离评估[J]. 激光与红外, 2017, 47(3): 304-307. DOI: 10.3969/j.issn.1001-5078.2017.03.009

    SUN Mingzhao, TIAN Chao, WANG Jiaxiao. Evaluation of operating distance of infrared imaging system under different atmospheric conditions [J]. Laser and Infrared, 2017, 47(3): 304-307 DOI: 10.3969/j.issn.1001-5078.2017.03.009
    [9]
    巢时宇, 李桂祥, 李志淮, 等. 红外系统距离方程与作用距离分析[J]. 空军雷达学院学报, 2011, 25(5): 318-321. https://www.cnki.com.cn/Article/CJFDTOTAL-KLDX201105003.htm

    CHAO Shiyu, LI Guixiang, LI Zhihuai, et al. Distance equation and action distance analysis of infrared system [J]. Journal of Air Force Radar College, 2011, 25(5): 318-321. https://www.cnki.com.cn/Article/CJFDTOTAL-KLDX201105003.htm
  • Related Articles

    [1]WANG Yan, JIN Ning, LIU Guoping, SHI Sheng, YANG Guangxu. Minimum Resolvable Contrast Testing of Short-wave IR Camera[J]. Infrared Technology , 2022, 44(8): 846-852.
    [2]SU Yue, BAI Xiaofeng, DANG Xiaogang, FENG Danqing, CHENG Hongchang, LI Zhoukui, HAN Kun. Influence of Brightness Gain on the Object-Background Contrast of an Image Intensifier[J]. Infrared Technology , 2022, 44(4): 383-388.
    [3]LI Xiaofeng, CHANG Le, LIU Beihong, XU Shiyu, DING Yibing. Analysis of Resolution Change of the Super Gen.Ⅱ Image Intensifier with Input Illumination Variation[J]. Infrared Technology , 2022, 44(4): 377-382.
    [4]GONG Zhiqiang, LIU Renjun, WANG Liqing, PENG Ling, LUO Yin. A High Dynamic Range Compression Technique Based on Infrared Contrast Enhancement[J]. Infrared Technology , 2021, 43(8): 792-797.
    [5]ZHU Hanlu, LU Fuxing, RAO Peng. Analysis of Target Detection Spectrum Based on System Contrast[J]. Infrared Technology , 2018, 40(1): 74-78.
    [6]ZHANG Chenghong, LI Fanming, WU Yingyue. Infrared Image Fusion Based on Visual Saliency and Contrast Enhancement[J]. Infrared Technology , 2017, 39(5): 421-426.
    [7]ZOU Qianjin, CHEN Qianrong, HAO Yongwang, YANG Miaomiao, LIU Lianwei, YAO Mei. Comparative Analysis of Visible Contrast between High and Low Altitude[J]. Infrared Technology , 2016, 38(11): 935-937.
    [8]YAO Qin-fen, SUI Xiu-bao. An Adaptive Contrast Enhancement Algorithm for Infrared Image[J]. Infrared Technology , 2009, 31(9): 541-544. DOI: 10.3969/j.issn.1001-8891.2009.09.011
    [9]WANG Chun-hong, XIANG Yang. Research on Average MTF of Line-array CCD with Contrast Method[J]. Infrared Technology , 2009, 31(5): 249-251,255. DOI: 10.3969/j.issn.1001-8891.2009.05.001
    [10]Influence and Analysis of Parameters Set on NETD Test[J]. Infrared Technology , 2009, 31(1): 27-31,34. DOI: 10.3969/j.issn.1001-8891.2009.01.008
  • Cited by

    Periodical cited type(2)

    1. 周双喜,李璐芳,喻琪超,孙胜利,林长青,李云飞. 基于ASIC和FPGA的可扩展红外信息获取架构设计. 系统工程与电子技术. 2025(04): 1057-1066 .
    2. 张关应,束云豪,赵宇嘉,候姝斌,李庆武. 红外与可见光图像特征引导融合的电力线检测方法. 应用科技. 2024(05): 66-72 .

    Other cited types(3)

Catalog

    Article views (646) PDF downloads (237) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return