WU Wenfei, LI Zhengqiang, YAO Qian, ZHOU Shikai, XU Hua, CHEN Zhenting, JIANG Qifeng. Simplified Calculation Method of FY-3D Satellite MERSI-Ⅱ Thermal Infrared Channel Split-Window Simulation[J]. Infrared Technology , 2025, 47(4): 410-420.
Citation: WU Wenfei, LI Zhengqiang, YAO Qian, ZHOU Shikai, XU Hua, CHEN Zhenting, JIANG Qifeng. Simplified Calculation Method of FY-3D Satellite MERSI-Ⅱ Thermal Infrared Channel Split-Window Simulation[J]. Infrared Technology , 2025, 47(4): 410-420.

Simplified Calculation Method of FY-3D Satellite MERSI-Ⅱ Thermal Infrared Channel Split-Window Simulation

More Information
  • Received Date: September 02, 2024
  • Revised Date: October 13, 2024
  • The split-window algorithm has been widely applied for surface temperature inversion of various satellite payloads. The iterative simulation of large datasets during the fitting of split-window algorithm coefficients is often time-consuming and inefficient. Therefore, it is important to develop a highly efficient simplification method for split-window simulation computations. MODTRAN was to simulate and analyze the impact of variations in background parameters on total radiance. Subsequently, we performed a simulation analysis of the relationship between key parameters and total radiance under two adjacent thermal infrared channels of FY-3D MERSI-Ⅱ, exploring the variation patterns of total radiance under different coupling scenarios of these key parameters. Simulation results reveal that under the MERSI-Ⅱ thermal infrared channels, changes in land surface temperature have a greater impact on total radiance than surface emissivity. The effect of the atmospheric water vapor content concentration on the total radiance increases with an increase in both the land surface emissivity and land surface temperature, whereas the influence of the land surface emissivity and land surface temperature on the total radiance decreases as the atmospheric water vapor content concentration increases. When determining the coefficients for the split-window algorithm, narrowing the range of the atmospheric water vapor content concentration can reduce the number of simulations required, thereby enhancing the efficiency. For land surface temperatures ranging from 300 to 320 K, the atmospheric water vapor content concentration should be within 0.5 to 5.5 g/cm²; for temperatures ranging from 270 to 300 K, this range narrows to 0.5 to 4.0 g/cm². The saved simulation runs account for 18.23% of the total number of runs, which reduces the simulation time by 26 min. A comparison of the split-window coefficient fitting and absolute difference calculation results before and after simplification shows that the simplified scheme has minimal impact on the fitting outcomes.

  • [1]
    Martha C. Anderson, Richard G. Allen, Anthony Morse, et al. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources [J]. Remote Sensing of Environment, 2012, 122: 50-65. DOI: 10.1016/j.rse.2011.08.025
    [2]
    SUN Liang, CHEN Zhongxin, GAO Feng, et al. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data [J]. Computers & Geosciences, 2017, 105: 10-20.
    [3]
    LI Ziying, HAN Yang, HAO Tianyi. Assessing the consistency of remotely sensed multiple drought indices for monitoring drought phenomena in continental China [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5490-5502. DOI: 10.1109/TGRS.2020.2966658
    [4]
    Yuhei Yamamoto, Hirohiko Ishikawa. Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days [J]. Urban Climate, 2020, 31: 1-10.
    [5]
    崔庆岗, 吴树明, 殷显阳, 等. 卫星热红外遥感技术在东平县地热资源调查中的应用[J]. 化工矿产地质, 2023, 45(2): 180-187. DOI: 10.3969/j.issn.1006-5296.2023.02.013

    CUI Qinggang, WU Shuming, YIN Xianyang, et al. Application of the satellite thermal infrared remote sensing technology in geothermal resource survey in Dongping County[J]. Geology of Chemical Minerals, 2023, 45(2): 180-187. DOI: 10.3969/j.issn.1006-5296.2023.02.013
    [6]
    郭圆新, 梁琨, 徐杨睿, 等. 基于直接散射光谱的多环境要素激光遥感方法[J]. 光电工程, 2024, 51(3): 52-76.

    GUO Yuanxin, LIANG Kun, XU Yangrui, et al. Multiple environmental elements laser remote sensing method based on direct scattering spectrum[J]. Opto-Electronic Engineering, 2024, 51(3): 52-76.
    [7]
    张璐, 张兴赢, 曹西凤, 等. 大气环境监测卫星星载激光雷达二氧化碳遥感反演方法及精度验证[J]. 上海航天(中英文), 2023, 40(3): 30-36.

    ZHANG Lu, ZHANG Xingying, CAO Xifeng, et al. Inversion method for XCO2 remote sensing by spaceborne lidar onboard atmospheric environmental monitoring satellite and its accuracy validation[J]. Aerospace Shanghai(Chinese & English), 2023, 40(3): 30-36.
    [8]
    YE Xin, REN Huazhong, ZHU Jinshun, et al. Land surface temperature retrieval based on thermal infrared channel decomposed split-window algorithm [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4971-4979. DOI: 10.1109/JSTARS.2022.3181505
    [9]
    LI Zhaoliang, WU Hua, WANG Ning, et al. Land surface emissivity retrieval from satellite data [J]. International Journal of Remote Sensing, 2013, 34(9-10): 3084-3127. DOI: 10.1080/01431161.2012.716540
    [10]
    Jordi Cristóbal, Juan C Jiménez-Muñoz, Anupma Prakash, et al. An improved single-channel method to retrieve land surface temperature from the landsat-8 thermal band[J]. Remote Sensing, 2018, 10(3): 431. DOI: 10.3390/rs10030431
    [11]
    ZHAO Junli, TANG Bohui, OUYANG Sima. A nonlinear split-window algorithm for retrieving land surface temperatures from Fengyun-4B thermal infrared data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-12.
    [12]
    MA Chenyang, QIAN Yonggang, LI Kun, et al. Temperature and emissivity retrieval from hyperspectral thermal infrared data using dictionary-based sparse representation for emissivity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-16.
    [13]
    Larry M. McMillin. Estimation of sea surface temperatures from two infrared window measurements with different absorption [J]. Journal of Geophysical Research, 1975, 80(36): 5113-5117. DOI: 10.1029/JC080i036p05113
    [14]
    John C Price. Land surface temperature measurements from the split window channels of the NOAA 7 advanced very high resolution radiometer[J]. Journal of Geophysical Research Atmospheres, 1984, 89(D5): 7231-7237. DOI: 10.1029/JD089iD05p07231
    [15]
    Becker F. The impact of spectral emissivity on the measurement of land surface temperature from a satellite[J]. International Journal of Remote Sensing, 1987, 8(10): 1509-1522. DOI: 10.1080/01431168708954793
    [16]
    TANG Bohui, BI Yuyun, LI Zhaoliang, et al. Generalized split-window algorithm for estimate of land surface temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data [J]. Sensors, 2008, 8(2): 933-951. DOI: 10.3390/s8020933
    [17]
    CHEN Du, REN Huazhong, QIN Qiming, et al. A practical split-window algorithm for estimating land surface temperature from Landsat 8 Data [J]. Remote Sensing, 2015, 7(1): 647-665. DOI: 10.3390/rs70100647
    [18]
    程元良, 吴骅, 李召良, 等. FY-3D MERSI-Ⅱ地表温度遥感反演与验证[J]. 遥感学报, 2021, 25(8): 1792-1807.

    CHENG Yuanliang, WU Hua, LI Zhaoliang, et al. Retrieval and validation of the land surface temperature from FY-3D MERSI-Ⅱ[J]. National Remote Sensing Bulletin, 2021, 25(8): 1792-1807.
    [19]
    姚前, 李正强, 樊程, 等. 中红外大气强吸收波段地气杂波全球空间分布研究[J]. 光谱学与光谱分析, 2024, 44(11): 1-17.

    YAO Qian, LI Zhengqiang, FAN Cheng, et al. Study on global spatial distribution of surface-atmosphere clutter in mid-infrared atmospheric strong absorption band[J]. Spectroscopy and Spectral Analysis, 2024, 44(11): 1-17.
    [20]
    WAN Zhengming. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product[J]. Remote Sensing of Environment, 2014, 140: 36-45.
    [21]
    姚前, 许华, 樊程, 等. 一种应用于卫星中红外遥感的辐射传输简化计算方案[J]. 红外与毫米波学报, 2024, 43(3): 377-392.

    YAO Qian, XU Hua, FAN Cheng, et al. A simplified parameterization scheme of mid-infrared radiative transfer for satellite remote sensing[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 377-392.
  • Related Articles

    [1]ZHOU Shikai, LI Zhengqiang, YAO Qian, WU Wenfei, XIE Yanqing, FAN Cheng. A Simplified Radiative Transfer Calculation Scheme for Transmittance in Satellite Thermal Infrared Remote Sensing[J]. Infrared Technology , 2025, 47(3): 272-280.
    [2]WU Jie, DUAN Yanyan, MA Xiaohu. Thermal Infrared Target Tracking Algorithm Based on KL Divergence and Channel Selection[J]. Infrared Technology , 2023, 45(1): 33-39.
    [3]ZHAO Yijian, WANG Qianqian, ZONG Yonghong, PENG Zhong, HU Biqiang. Variable Step Length Operating Range Evaluation Algorithm for Infrared Systems Based on MODTRAN[J]. Infrared Technology , 2021, 43(11): 1067-1072.
    [4]ZHENG Xiao, GE Zhixiong, LAI Yongan. Algorithm for Blind-pixel Detection of IRFPA Based on Sliding Window[J]. Infrared Technology , 2019, 41(8): 735-741.
    [5]ZHANG Zhi-lin, SUN Wei-min, XING Jian, CUI Shuang-long. An Improved Algorithm Research on VIS-IR Multi-spectral Thermometry[J]. Infrared Technology , 2013, (8): 518-521.
    [6]Study on Electromagnetic Shielding of Infrared /Visible Optical Window[J]. Infrared Technology , 2012, 34(7): 393-397. DOI: 10.3969/j.issn.1001-8891.2012.07.004
    [7]A Blind Pixel Self-adaptive Detection And Compensation Algorithm Based on Sliding Window and Multi-frame Compensation[J]. Infrared Technology , 2010, 32(7): 420-423. DOI: 10.3969/j.issn.1001-8891.2010.07.013
    [8]WU Xiao-zhong, TENG Peng, LU Yi, LIU Jian. Calculation and Simulation of Infrared Radiation about Some Jet Aircraft[J]. Infrared Technology , 2008, 30(12): 727-731. DOI: 10.3969/j.issn.1001-8891.2008.12.011
    [9]SHEN Zhen-feng, FENG Xiao-guo, GAO Jin-song, ZHAO Jing-li, WANG Xiao-yi. The Inducting Mesh Coating Used for Electromagnetic Shielding of the Infrared Windows[J]. Infrared Technology , 2008, 30(8): 468-471. DOI: 10.3969/j.issn.1001-8891.2008.08.010
    [10]The Temperature Control Method for the Germanium Window of Periscope[J]. Infrared Technology , 2001, 23(2): 11-12,16. DOI: 10.3969/j.issn.1001-8891.2001.02.004

Catalog

    Article views (58) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return