留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯异质结及其光电器件的研究进展

韩天亮 唐利斌 左文彬 姬荣斌 项金钟

韩天亮, 唐利斌, 左文彬, 姬荣斌, 项金钟. 石墨烯异质结及其光电器件的研究进展[J]. 红外技术, 2021, 43(12): 1141-1157.
引用本文: 韩天亮, 唐利斌, 左文彬, 姬荣斌, 项金钟. 石墨烯异质结及其光电器件的研究进展[J]. 红外技术, 2021, 43(12): 1141-1157.
HAN Tianliang, TANG Libin, ZUO Wenbin, JI Rongbin, XIANG Jinzhong. Research Progress of Graphene Heterojunctions and Their Optoelectronic Devices[J]. Infrared Technology , 2021, 43(12): 1141-1157.
Citation: HAN Tianliang, TANG Libin, ZUO Wenbin, JI Rongbin, XIANG Jinzhong. Research Progress of Graphene Heterojunctions and Their Optoelectronic Devices[J]. Infrared Technology , 2021, 43(12): 1141-1157.

石墨烯异质结及其光电器件的研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

自然科学基金项目 11864044

详细信息
    作者简介:

    韩天亮(1995-),男,硕士研究生,研究方向是光电材料

    通讯作者:

    唐利斌(1978-),男,研究员级高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail:sscitang@163.com

    项金钟(1963-),男,教授,主要从事低维物理、纳米结构材料及光电应用研究。E-mail:jzhxiang@ynu.edu.cn

  • 中图分类号: TN204

Research Progress of Graphene Heterojunctions and Their Optoelectronic Devices

  • 摘要: 石墨烯是具有高迁移率、高热导率、高比表面积、高透过率及良好的机械强度等特性的二维材料,在光电子器件领域被广泛用作透明电极及电荷传输层等。但由于石墨烯是零带隙材料,为半金属性,限制了其在半导体光电子器件领域的应用。为更加切合半导体产业应用的要求,构建异质结已经成为相关领域实现应用的重要途径。国际上已有较多团队开展了石墨烯异质结相关研究,目前已有较多报道。本文从石墨烯的性质出发,讲述了石墨烯异质结的发展历程,制备方法,并从材料制备与器件结构的角度总结了基于石墨烯异质结光电子器件的研究进展。最后,对石墨烯异质结在光电子器件领域的发展进行了展望。
  • 图  1  几种石墨烯结构、形貌的表征图:(a) CVD制备石墨烯的高分辨透射电镜(high resolution transmission electron microscopy, HRTEM)图像[15];(b) 石墨烯纳米片的扫描电镜(scanning electron microscopy, SEM)形貌图[16];(c) 石墨烯量子点的TEM表征图[17];(d) 石墨烯纳米线的SEM形貌图[18];(e) 外延生长石墨烯的莫尔图案[19];(f) 石墨烯纳米棒的SEM形貌图[20];(g) 石墨烯/TiO2/Ag团簇的SEM表征图[21];(h) 石墨烯/TiO2/Ag团簇的TEM表征图[21];(i) CVD石墨烯薄膜的实物图[22]

    Figure  1.  Characterizations of several graphene structures and morphologies: (a) HRTEM image of CVD graphene[15]; (b) SEM image of graphene nanosheets[16]; (c) TEM image of graphene quantum dots[17]; (d) SEM image of graphene nanowires[18]; (e) Epitaxially grown graphene Moiré pattern[19]; (f) SEM image of graphene nanorods[20]; (g) SEM image of graphene/TiO2/Ag clusters[21]; (h) TEM image of graphene/TiO2/Ag clusters; (i) Optical image of CVD transferred graphene film[22]

    图  2  石墨烯异质结的结构:(a) 单层石墨烯(SLG)与TiO2纳米棒异质结光电探测器[28];(b) SLG与TiO2纳米棒异质结截面SEM图[28];(c) β-Ga2O3与石墨烯异质结光电探测器[33];(d) 石墨烯纳米沟道光电探测器[34];(e) 石墨烯/MoTe2异质结光电探测器[35];(f) 石墨烯/钙钛矿异质结光电探测器[36];(g) 石墨烯/Si异质结光电探测器[37];(h) 石墨烯/GeSn异质结光电探测器[38];(i) 范德瓦尔斯异质结叠放结合示意图[39]

    Figure  2.  The structures of graphene heterojunctions: (a) Single-layer graphene (SLG) and TiO2 nanorod heterojunction photodetector[28]; (b) Cross-section SEM image of SLG and TiO2 nanorod heterojunction[28]; (c) β-Ga2O3 and graphene heterojunction photodetector[33]; (d) Graphene nanochannel photodetector[34]; (e) Graphene/MoTe2 heterojunction photodetectors[35]; (f) Graphene/perovskite heterojunction photodetectors[36]; (g) Graphene/Si heterojunction photodetector[37]; (h) Graphene/GeSn heterojunction photodetector[38]; (i) Diagram of van der Waals heterojunction stacking and combining[39]

    图  3  石墨烯异质结对能带结构的调制:(a) 石墨烯/碳纳米管(CNT)异质结场效应晶体管器件结构示意图[40];(b) 石墨烯/碳纳米管异质结能带图,其中VGS表示出了其能带的弯曲变化情况[40];(c) 石墨烯-碳纳米管异质结电容随电压变化图[40];(d) WS2/石墨烯异质结器件示意图[41];(e) WS2/石墨烯异质结器件中低于WS2能级的两种不同的载流子激发机制[41];(f) 加入不同层数石墨烯的瞬态吸收光谱图[41];(g) MoS2/graphene/WSe2PGN异质结的器件结构示意图[42];(h) MoS2/graphene/WSe2异质的能带示意图,其中画出了载流子运输机制[42];(i) MoS2/graphene/WSe2PGN异质结器件的响应率和探测率随波长的变化图[42]

    Figure  3.  Modulations of the energy band structure of graphene heterojunctions: (a) Schematic diagram of graphene/carbon nanotube (CNT) heterojunction field effect transistor device structure[38]; (b) Diagram of graphene/carbon nanotube heterojunction energy band, where VGS shows the bending change of its energy band[38]; (c) C-V curves of graphene/carbon nanotube heterojunction[38]; (d) Device structure of WS2/graphene heterojunction[41]; (e) Two carrier excitation mechanisms below the WS2 band gap of WS2/ graphene heterojunction[41]; (f) TA spectrum with different layer graphene[41]; (g) Device structure of MoS2/graphene/WSe2 PGN heterojunction[42]; (h) Energy band of the MoS2/graphene/WSe2 heterojunction and carrier transport mechanisms[42]; (i) R-λ and D*-λ curves of MoS2/graphene/WSe2 PGN heterojunction[42]

    图  4  石墨烯异质结的光电特性:(a) ZnO纳米棒的SEM图[43];(b) 覆盖有石墨烯的ZnO纳米棒的Mapping图[43];(c) 加入石墨烯与未加石墨烯样品的PL光谱图[43];(d) CsPbBr3/石墨烯异质结的器件示意图[44];(e)和(f)分别为CsPbBr3/石墨烯异质结产生的PPC、NPC效应的能带解析图[44];(g) CsPbBr3/石墨烯异质结在紫外光照下的光电响应图谱[44];(h) CsPbBr3/石墨烯异质结在不同的可见光波段下的光电响应图[44]

    Figure  4.  Optoelectronic characteristics of graphene heterojunctions: (a) SEM image of ZnO nanorods[43]; (b) Mapping images of ZnO nanorods covered with graphene[43]; (c) PL spectrum of samples with and without graphene[43]; (d) Structures of CsPbBr3/graphene heterojunction device[44]; (e) and (f) The energy band analysis diagrams of PPC and NPC effects of CsPbBr3/graphene heterojunctions[44]; (g) Photoelectric response of CsPbBr3/graphene heterojunctions under radiation of ultraviolet light[44]; (h) Photoelectric response of CsPbBr3/graphene heterojunction in different visible light bands[44]

    图  5  石墨烯异质结的热力、力学特性:(a) 磷烯/石墨烯异质结器件两端放置在冷场和热场的示意图[45];(b) 磷烯/石墨烯异质结界面处温度特性[45];(c) 室温下磷烯/石墨烯异质结在不同界面构型处的ITC变化情况[45];(d) C3N/石墨烯异质结结区温度特性[46];(e) C3N/石墨烯异质结器件能量-时间曲线[46];(f) MoS2/石墨烯器件结构图[47];(g) MoS2/石墨烯异质结构中和无张力的双层石墨烯中石墨烯的面内声子谱Gi (ω)的比较[47];(h)MoS2/石墨烯异质结的热声子对比[47]

    Figure  5.  Thermal and mechanical properties of graphene heterojunctions: (a) The schematic diagram of phosphorene/graphene heterojunction device, which ends are placed at the cold and hot fields[45]; (b) The temperature characteristics of the phosphorene/grapheme heterojunction interfaces[45]; (c) ITC changes of phosphorene/grapheme heterojunction with different interfacial configurations at room temperature[45]; (d) Temperature characteristics of junction area of C3N/graphene heterojunction[46]; (e) Energy-Time curves of C3N/graphene heterojunction device[46]; (f) Structure diagram of MoS2/graphene device[47]; (g) Comparison of in-plane phonon spectrum Gi(ω) of graphene in MoS2/graphene heterostructure and in bilayer graphene without tension[47]; (h) Comparisons of thermophonons in MoS2/graphene heterojunction[47]

    图  6  石墨烯异质结器件的结构和表征:(a) 石墨烯/MoS2/石墨烯垂直异质结构示意图[64];(b) 石墨烯/MoS2/石墨烯器件的光学照片[64];(c) SiC/Graphene异质结器件示意图[67];(d) 石墨烯纳米片光电器件示意图,右图为单元纳米片的截面SEM图[65];(e) Bi2Te3/石墨烯异质结器件示意图[66];(f) 石墨烯/GeOI异质结近红外光电探测器的结构示意图和原子力显微镜(Atom force microscopy, AFM)表征图及石墨烯/GeOI肖特基结能带结构[68];(g) GaAs/Al2O3/Graphene器件结构示意图[69]

    Figure  6.  Structures and characterizations of grapheme heterojunction devices: (a) Schematic diagram of the vertical hetero structure of graphene/MoS2/graphene[64]; (b) Optical photo of graphene/MoS2/graphene device[64]; (c) Structure diagram of SiC/graphene heterojunction device[67]; (d) Diagram of graphene nanosheet photoelectric device, the right picture is the cross-sectional SEM image of the unit nanosheet[65]; (e) Structure diagram of Bi2Te3/graphene heterojunction device[66]; (f) Schematic illustration of the graphene/GeOI heterojunction near infrared photodetector, AFM image of the device and the energy band structure of graphene/GeOI Schottky junction[68]; (g) Structure diagram of GaAs/Al2O3/graphene device[69]

    图  7  几种外延生长制备的石墨烯异质结器件:(a) 水热法组装WS2/石墨烯光电探测器示意图[62];(b) WS2/Graphene异质结器件SEM图[62];(c) 石墨烯外延生长的AFM图[61];(d) 在石墨烯基底上气相沉积WS2的器件制备示意图[61];(e) Si纳米线/石墨烯异质结样品TEM图[70];(f) Si纳米线/石墨烯异质结器件Raman表征[70];(g) Si纳米线/石墨烯异质结制备图[70]

    Figure  7.  Several graphene heterojunction devices prepared by epitaxial growth: (a) Diagram of WS2/Graphene photodetector prepared by hydrothermal method[62]; (b) SEM image of WS2/graphene heterojunction device[62]; (c) AFM image of graphene epitaxial growth[61]; (d) Diagram of device preparation by vapor deposition WS2 on graphene substrate[61]; (e) TEM image of Si nanowire/graphene heterojunction sample[70]; (f) Raman spectrum of Si nanowire/graphene heterojunction device[70]; (g) Diagram of preparation of Si nanowire/graphene heterojunction[70]

    图  8  石墨烯异质结场效应管的研究进展:(a) WS2/graphene垂直异质结场效应管显微图像[71];(b) 柔性透明衬底上的WS2/graphene异质结场效应管实物图[71];(c) WS2/graphene异质结的对数I-V特性曲线[71];(d) WSe2/graphene/WS2范德瓦尔斯异质结场效应管光电探测器[72];(e) WSe2/graphene/WS2异质结结构图[72];(f) WSe2/graphene/WS2与WSe2/WS2异质结的I-V曲线对比图[72];(g) 石墨烯/Si范德瓦尔斯异质结中THz光谱产生过程示意图[73];(h) 石墨烯/Si异质结发射的THz波幅与CW泵浦功率的关系图[73];(i) 石墨烯/C60/石墨烯异质结场效应管示意图[74]

    Figure  8.  Research progresses of graphene heterojunction field effect transistors (FET): (a) Micrograph of WS2/ graphene vertical heterojunction FET[71]; (b) Photo of WS2/graphene heterojunction FET on flexible and transparent substrate[71]; (c) Log I-V curves of WS2/graphene heterojunction[71]; (d) WSe2/graphene/WS2 van der Waals (vdWs) heterojunction FET photodetector[72]; (e) Structure of WSe2/graphene/WS2 heterojunction[72]; (f) Comparison of I-V curves of WSe2/graphene/WS2with WSe2/WS2 hetero - junction[72]; (g) Schematic of the THz generation process from the graphene/Si vdWs heterostructure[73]; (h) Dependence of the graphene/Si heterojunction emitted THz amplitude on the CW pump power[73]; (i) Diagram of graphene/C60/graphene heterojunction FET[74]

    图  9  石墨烯异质结在太阳能电池中的应用:(a) Al离子电池中MoSe2/N-石墨烯异质结结构电极[76];(b) N-石墨烯调制Al离子电池测试[76];(c) MoSe2/N-石墨烯异质结器件电容测试[76];(d) 复合石墨烯太阳能电池器件结构示意图[78];(e) MoS2/graphene异质结太阳能电池器件结构示意图[79];(f) 石墨烯作为Si异质结p-i-n结构电极[80];(g) 复合石墨烯太阳能电池器件的J-V曲线[78];(h) MoS2/graphene异质结太阳能电池的J-V曲线[79];(i) 有石墨烯的Si异质结p-i-n结构太阳能电池J-V曲线[80]

    Figure  9.  Applications of graphene heterojunctions in solar cells: (a) MoSe2/N-graphene heterojunction structure electrode in Al ion battery[76]; (b) Test of Al ion battery with N-graphene modulation[76]; (c) Capacitance test of MoSe2/N-graphene device[76]; (d) Schematic diagram of composited graphene solar cell device structure[78]; (e) Schematic diagram of MoS2/graphene heterojunction solar cell device structure[79]; (f) Graphene used as p-i-n structure electrode of Si heterojunction[80]; (g) J-V curves of composited graphene solar cell device[78]; (h) J-V curve of MoS2/graphene heterojunction solar cell[79]; (i) J-V curves of Si heterojunction p-i-n structure solar cell with graphene[80]

    图  10  石墨烯异质结在光电探测器中的应用:(a) Graphene/PdSe2/Ge异质结光电探测器结构示意图[81];(b) Graphene/n-Si异质结光电探测器结构示意图[82];(c) Graphene/n-Si异质结光电探测器能带图[82];(d) 非晶MgGaO/graphene异质结紫外光伏器件结构示意图[83];(e) ReSe2/graphene异质结DUV光电探测器结构示意图[84];(f) 石墨烯纳米壁/Si杂化异质结器件示意图[85];(g) 具有类金刚石中间碳层(DLC)的Graphene/Si异质结光电探测器结构示意图[86];(h) Graphene/DLC/Si器件SEM形貌图[86]

    Figure  10.  Applications of graphene heterojunction in photodetectors: (a) Structure diagram of graphene/PdSe2/Ge heterojunction photodetector[81]; (b) Structure diagram of graphene/n-Si heterojunction photodetector[82]; (c) Energy band diagram of graphene/n-Si heterojunction photodetector[82]; (d) Structure diagram of amorphous-MgGaO/graphene heterojunction ultraviolet photovoltaic device[83]; (e) Structure diagram of ReSe2/graphene heterojunction DUV photodetector[84]; (f) Diagram of graphene nanowall/Si hybrid heterojunction device[85]; (g) Structure diagram of graphene/Si heterojunction photodetector with diamond-like intermediate carbon layer (DLC)[86]; (h) SEM image of graphene/DLC/Si device[86]

    表  1  石墨烯异质结制备方法与器件的性能研究现状

    Table  1.   Current research status of graphene heterojunction preparation methods and device performances

    Preparation type Heterojunction structure Method Application and performance Ref.
    Random transfer Graphene/GaN/PDMS MOCVD Strain-controlled sensor 0.1% compression strain with a gauge factor of 13.48 [49]
    Graphene/MoS2 CVD Optoelectronic device Response time is 2 ps [50]
    Graphene/WS2 Mechanical peeling - - [51]
    Graphene/AlN/Si CVD/ALD Photodetector Rmax=3.96 A·W-1 [52]
    P3HT/Graphene/ PZT CVD Photodetector Rmax=50 A·W-1 [53]
    Controlled transfer Graphene/β-Ga2O3 CVD Photodetector R=12.8 A·W-1 [54]
    MLG/β-Ga2O3 CVD Photodetector D*=5.92×1013 Jones [33]
    Graphene/Si MOCVD Photodetector R=635 mAW-1 [38]
    Ge1-xSnx/Graphene CVD Photodetector R=1968 AW-1
    D*=2.962×1011 Jones
    [55]
    Graphene/Black phosphorus Mechanical peeling Photodetector R=183 mA·W-1
    D*=6.69×108 Jones
    [56]
    Black phosphorus/Graphene/InSe Mechanical peeling Photodetector R=3.02×104 mA·W-1
    D*=3.19×1015 Jones
    [57]
    Induced grown Bi2Se3/Graphene MBE Topological insulator anoplate - [58]
    Graphene/MoS2
    Grephene/WSe2
    Graphene/h-BN
    CVD - The light response of the device is significantly improved [59]
    Bi2Se3/Graphene MBE - - [60]
    WS2/Graphene CVD - Carrier lifetime increased by an order of magnitude [61]
    Graphene/MoS2
    Grephene/WSe2
    Graphene/h-BN
    CVD Van der Waals (vdWs) hetero-structures Light response is greatly improved [62]
    WS2/Graphene Hydrothermal Photoelectro chemical-type photodetector Light current is 1.4 μA·cm-2 at 0 V bias [63]
    下载: 导出CSV
  • [1] LI X, SHEN R, MA S, et al. Graphene-based heterojunction photo-catalysts[J]. Applied Surface Science, 2018, 430: 53-107. doi:  10.1016/j.apsusc.2017.08.194
    [2] WANG J J, LIU S, WANG J, et al. Valley super current in the Kekulé graphene superlattice heterojunction[J]. Physical Review B, 2020, 101(24): 245428. doi:  10.1103/PhysRevB.101.245428
    [3] Kecsenovity E, Endrodi B, Toth P S, et al. Enhanced photo-electrochemical performance of cuprous oxide/Graphene nanohybrids[J]. Journal of American Chemistry Society, 2017, 139(19): 6682-6692. doi:  10.1021/jacs.7b01820
    [4] Tran M H, Park T, Hur J. Solution-processed ZnO: graphene quantum dot/poly-TPD heterojunction for high-performance UV photodetectors[J]. Applied Surface Science, 2021, 539: 148222. doi:  10.1016/j.apsusc.2020.148222
    [5] ZHENG S, SUN J, HAO J, et al. Engineering SnO2 nanorods/ethylenediamine-modified graphene heterojunctions with selective adsorption and electronic structure modulation for ultrasensitive room -temperature NO2 detection[J]. Nanotechnology, 2021, 32(15): 155505. doi:  10.1088/1361-6528/abd657
    [6] Kirubasankar B, Murugadoss V, LIN J, et al. In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors[J]. Nanoscale, 2018, 10(43): 20414-20425. doi:  10.1039/C8NR06345A
    [7] SONG T, LONG B, YIN S, et al. Designed synthesis of a porous ultrathin 2D CN@graphene@CN sandwich structure for superior photocatalytic hydrogen evolution under visible light[J]. Chemical Engineering Journal, 2021, 404: 126455. doi:  10.1016/j.cej.2020.126455
    [8] LI Q, QIU S, WU C, et al. Computational investigation of MgH2/graphene heterojunctions for hydrogen storage[J]. The Journal of Physical Chemistry C, 2021, 125(4): 2357-2363. doi:  10.1021/acs.jpcc.0c10714
    [9] Bae S, Kim H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578. doi:  10.1038/nnano.2010.132
    [10] WU J, Becerril H A, BAO Z, et al. Organic solar cells with solution-processed graphene transparent electrodes[J]. Applied Physics Letters, 2008, 92(26): 263302. doi:  10.1063/1.2924771
    [11] XU Y, CHENG C, DU S, et al. Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p-n heterojunctions[J]. ACS Nano, 2016, 10(5): 4895-919. doi:  10.1021/acsnano.6b01842
    [12] Paradisanos I, McCreary K M, Adinehloo D, et al. Prominent room temperature valley polarization in WS2/graphene heterostructures grown by chemical vapor deposition[J]. Applied Physics Letters, 2020, 116: 203104. doi:  10.1063/5.0004379
    [13] QIAN G, CHEN J, YU T, et al. N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density[J]. Nano-Micro Letters, 2021, 13(1): 77. doi:  10.1007/s40820-021-00607-5
    [14] Massaro A, Pecoraro A, Muñoz-García A B, et al. First-principles study of na intercalation and diffusion mechanisms at 2D MoS2/Graphene interfaces[J]. The Journal of Physical Chemistry C, 2021, 125(4): 2276-2286. doi:  10.1021/acs.jpcc.0c10107
    [15] Bhaviripudi S, JIA X, Dresselhaus M S, et al. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst[J]. Nano Letters, 2010, 10(10): 4128-4133. doi:  10.1021/nl102355e
    [16] YI Z Y, XU J Y, XU Z H, et al. Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries[J]. Journal of Energy Chemistry, 2021, 60: 241-248. doi:  10.1016/j.jechem.2021.01.022
    [17] Hasan M T, LEE B H, LIN C W, et al. Near-infrared emitting graphene quantum dots synthesized from reduced graphene oxide for in vitro/in vivo/ex vivo bioimaging applications[J]. 2D Materials, 2021, 8(3): 035013. doi:  10.1088/2053-1583/abe4e3
    [18] TANG Q, WANG L, MA X, et al. Rodlike SnO2/Graphene nano-composite and its application for lithium-ion batteries[J]. Materials Letters, 2021, 294: 129765. doi:  10.1016/j.matlet.2021.129765
    [19] YANG W, CHEN G, SHI Z, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nature Materials, 2013, 12(9): 792-797. doi:  10.1038/nmat3695
    [20] QIANG M, HUANG X M, LV K, et al. Ultrasound-enhanced preparation and photocatalytic properties of graphene-ZnO nanorod composite[J]. Separation and Purification Technology, 2021, 259: 118131. doi:  10.1016/j.seppur.2020.118131
    [21] Ashraf M A, LIU Z L, PENG W X, et al. Combination of sonochemical and freeze-drying methods for synthesis of Graphene/Ag-doped TiO2 nanocomposite: a strategy to boost the photocatalytic performance via well distribution of nanoparticles between graphene sheets[J]. Ceramics International, 2020, 46(6): 7446-7452. doi:  10.1016/j.ceramint.2019.11.241
    [22] LI X S, CAI W W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. doi:  10.1126/science.1171245
    [23] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi:  10.1126/science.1102896
    [24] Bunch J S, Van Der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493. doi:  10.1126/science.1136836
    [25] Kim K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710. doi:  10.1038/nature07719
    [26] YAN K, WU D, PENG H, et al. Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation[J]. Nature Communications, 2012, 3: 1280. doi:  10.1038/ncomms2286
    [27] LIN T Q, CHEN I W, LIU F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. doi:  10.1126/science.aab3798
    [28] LIANG F X, WANG J Z, WANG Y, et al. Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection[J]. Applied Surface Science, 2017, 426: 391-398. doi:  10.1016/j.apsusc.2017.07.051
    [29] ZHANG T, CHANG H, WU Y, et al. Macroscopic and direct light propulsion of bulk graphene material[J]. Nature Photonics, 2015, 9(7): 471-476. doi:  10.1038/nphoton.2015.105
    [30] Park J M, CAO Y, Watanabe K, et al. Tunable strongly coupled super conductivity in magic-angle twisted trilayer graphene[J]. Nature, 2021, 590(7845): 249-255. doi:  10.1038/s41586-021-03192-0
    [31] XIE C, WANG Y, ZHANG Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19: 41-83. doi:  10.1016/j.nantod.2018.02.009
    [32] Novoselov K S, JIANG D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of United Statesof America, 2005, 102(30): 10451-10453. doi:  10.1073/pnas.0502848102
    [33] KONG W Y, WU G A, WANG K Y, et al. Graphene-beta-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 2016, 28(48): 10725-10731. doi:  10.1002/adma.201604049
    [34] MA P, Salamin Y, Baeuerle B, et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size[J]. ACS Photonics, 2019, 6: 154-161 doi:  10.1021/acsphotonics.8b01234
    [35] Flöry N, MA P, Salamin Y, et al. Waveguide-integrated vander Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity[J]. Nature Nanotechnology, 2020, 15(2): 118-124 doi:  10.1038/s41565-019-0602-z
    [36] AlAmri A M, Leung S F, Vaseem M, et al. Fully inkjet-printed photodetector using a graphene/perovskite/graphene hetero-structure[J]. IEEE Transactions On Electron Devices, 2019, 66(6): 2657-2661. doi:  10.1109/TED.2019.2911715
    [37] GUO J S, LI J, LIU C Y, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm[J]. Science & Applications, 2020, 9(29): 1-11 http://doc.paperpass.com/journal/20200049gkxyyy-e.html
    [38] YANG F, YU K, CONG H, et al. Highly enhanced SWIR image sensors based on Ge1–xSnx/Graphene heterostructure photodetector[J]. ACS Photonics, 2019, 6(5): 1199-1206. doi:  10.1021/acsphotonics.8b01731
    [39] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425. doi:  10.1038/nature12385
    [40] XU L, QIU C, PENG L M, et al. Transconductance amplification in dirac-source field-effect transistors enabled by Graphene/Nanotube hereojunctions[J]. Advanced Electronic Materials, 2020, 6(5): 1901289. doi:  10.1002/aelm.201901289
    [41] YUAN L, CHUANG T F, Kuc A, et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene hetero- structures[J]. Science Advances, 2018, 4(2): 9. http://www.researchgate.net/profile/Long_Yuan5/publication/322900841_Photocarrier_generation_from_interlayer_charge-transfer_transitions_in_WS2-graphene_heterostructures/links/5af44c0b4585157136ca1d3d/Photocarrier-generation-from-interlayer-charge-transfer-transitions-in-WS2-graphene-heterostructures.pdf
    [42] LONG M, LIU E, WANG P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259. doi:  10.1021/acs.nanolett.5b04538
    [43] LI J T, LIN Y, LU J F, et al. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance[J]. ACS Nano, 2015, 9: 6794-6800. doi:  10.1021/acsnano.5b01319
    [44] JIN H, CHEN Y, ZHANG L, et al. Positive and negative photo-conductivity characteristics in CsPbBr3/Graphene hetero-junction[J]. Nanotechnology, 2021, 32(8): 085202. doi:  10.1088/1361-6528/abc850
    [45] LIU X, GAO J, ZHANG G, et al. Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance[J]. Nanoscale, 2018, 10(42): 19854-19862. doi:  10.1039/C8NR06110F
    [46] Eshkalak E K, Sadeghzadeh S, Molaei F. Interfacial thermal resistance mechanism for the polyaniline (C3N)-Graphene heterostructure[J]. The Journal of Physical Chemistry C, 2020, 124(26): 14316-14326. doi:  10.1021/acs.jpcc.0c02051
    [47] GAO Y, LIU Q, XU B. Lattice mismatch dominant yet mechanically tunable thermal conductivity in bilayer heterostructures[J]. ACS Nano, 2016, 10(5): 5431-5439. doi:  10.1021/acsnano.6b01674
    [48] LIN L, DENG B, SUN J, et al. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene[J]. Chemical Review, 2018, 118(18): 9281-9343. doi:  10.1021/acs.chemrev.8b00325
    [49] Puneetha P, Mallem S P R, Lee Y W, et al. Strain-controlled flexible Graphene/GaN/PDMS sensors based on the piezotronic effect[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36660-36669. doi:  10.1021/acsami.0c06534
    [50] WANG X, LONG R. Rapid charge separation boosts solar hydrogen generation at the Graphene-MoS2 junction: time-domain ab initio analysis[J]. The Journal of Physical Chemistry Letters, 2021, 12(11): 2763-2769. doi:  10.1021/acs.jpclett.1c00322
    [51] HE J, HE D, WANG Y, et al. Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals hetero-structures[J]. Optical Express, 2017, 25(3): 1949-1957. doi:  10.1364/OE.25.001949
    [52] YIN J, LIU L, ZANG Y, et al. Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors[J]. Light: Science and Applications, 2021, 10(1): 113. doi:  10.1038/s41377-021-00553-2
    [53] TAN W C, SHI W H, CHEN Y F. A highly sensitive Graphene-organic hybrid photodetector with a piezoelectric substrate[J]. Advanced Functional Materials, 2014, 24(43): 6818-6825. doi:  10.1002/adfm.201401421
    [54] LIN R, ZHENG W, ZHANG D, et al. High-performance Graphene/β- Ga2O3 heterojunctiondeep-ultraviolet photodetector with hot-electron excited carrier multiplication[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22419-22426. http://www.onacademic.com/detail/journal_1000040438416110_937f.html
    [55] Riazimehr S, Kataria S, Gonzalez-Medina J M, et al. High responsivity and quantum efficiency of graphene/silicon photodiodes achieved by inter digitating Schottky and gated regions[J]. ACS Photonics, 2018, 6(1): 107-115. doi:  10.1021/acsphotonics.8b00951
    [56] ZHANG X, YAN C, HU X, et al. High performance mid-wave infrared photodetector based on graphene/black phosphorus heterojunction[J]. Materials Research Express, 2021, 8(3): 035602. doi:  10.1088/2053-1591/abed14
    [57] WANG H, GAO S, ZHANG F, et al. Repression of interlayer recombination by graphene generates a sensitive nanostructured 2D vdW heterostructure based photodetector[J]. Advanced Science, 2021, 8(15): 2100503. doi:  10.1002/advs.202100503
    [58] DANG W, PENG H, LI H, et al. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene[J]. Nano Letters, 2010, 10(8): 2870-2876. doi:  10.1021/nl100938e
    [59] LIN Y C, LU N, Perea-Lopez N, et al. Direct synthesis of van der Waals solids[J]. ACS Nano, 2014, 8(4): 3715-3723. doi:  10.1021/nn5003858
    [60] LIU Y, Weinert M, LI L. Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001)[J]. Physical Review Letters, 2012, 108(11): 115501. doi:  10.1103/PhysRevLett.108.115501
    [61] Aeschlimann S, Rossi A, Chávez-Cervantes M, et al. Direct evidence for efficient ultrafast charge separation in epitaxial WS2/graphene heterostructures[J]. Science Advances, 2020, 6: eaay0761. doi:  10.1126/sciadv.aay0761
    [62] HAN T, LIU H, WANG S, et al. Research on the preparation and spectral characteristics of Graphene/TMDs hetero-structures[J]. Nanoscale Research Letters, 2020, 15(1): 219. doi:  10.1186/s11671-020-03439-1
    [63] REN X, WANG B, HUANG Z, et al. Flexible self-powered photo- electrochemical-type photodetector based on 2D WS2-graphene heterojunction[J]. Flat Chem, 2021, 25: 100215. http://www.sciencedirect.com/science/article/pii/S2452262720300647
    [64] GAO S, WANG Z, WANG H, et al. Graphene/MoS2/Graphene vertical heterostructure-based broadband photodetector with high performance[J]. Advanced Materials Interfaces, 2020, 8(3): 2001730. doi:  10.1002/admi.202001730
    [65] ZHANG X, TIAN L, DIAOD, et al. High-response heterojunction phototransistor based on vertically grown graphene nanosheets film[J]. Carbon, 2021, 172: 720-728. doi:  10.1016/j.carbon.2020.10.054
    [66] LAN J C, QIAO J, SUNG W H, et al. Role of carrier-transfer in the optical nonlinearity of graphene/Bi2Te3 heterojunctions[J]. Nanoscale, 2020, 12(32): 16956-16966. doi:  10.1039/D0NR02085K
    [67] LI L, ZANG Y, LIN S, et al. Fabrication and characterization of SiC/Ge/ graphene heterojunction with Ge micro-nano structures[J]. Nanotechnology, 2020, 31(14): 145202. doi:  10.1088/1361-6528/ab6676
    [68] XU A, YANG S, LIU Z, et al. Near-infrared photodetector based on Schottky junctions of monolayer graphene/GeOI[J]. Materials Letters, 2018, 227: 17-20. doi:  10.1016/j.matlet.2018.04.107
    [69] TAO Z, ZHOU D, YIN H, et al. Graphene/GaAs heterojunction for highly sensitive, self-powered visible/NIR photodetectors[J]. Materials Science in Semiconductor Processing, 2020, 111: 104989. doi:  10.1016/j.mssp.2020.104989
    [70] HU J, LI L, WANG R, et al. Fabrication and photoelectric properties of a grapheme-silicon nanowire heterojunction on a flexible polytetra fluoroethylene substrate[J]. Materials Letters, 2020, 281: 128599. doi:  10.1016/j.matlet.2020.128599
    [71] Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics[J]. Nature Nanotechnology, 2013, 8(2): 100-103. doi:  10.1038/nnano.2012.224
    [72] YOU C, DENG W, CHEN X, et al. Enhanced photodetection performance in graphene-assisted tunneling photodetector[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1702-1709. doi:  10.1109/TED.2021.3058087
    [73] DU W Y, YAO Z H, ZHU L P, et al. Photodoping of graphene/silicon van der Waals heterostructure observed by terahertz emission spectroscopy[J]. Applied Physics Letters, 2020, 117: 081106. doi:  10.1063/5.0020068
    [74] PAN R, HAN J, ZHANG X, et al. Excellent performance in vertical graphene -C60-graphene heterojunction phototransistors with a tunable bi -directionality[J]. Carbon, 2020, 162: 375-381. doi:  10.1016/j.carbon.2020.02.030
    [75] LIU X, GAO P, HU W, et al. Photogenerated-carrier separation and transfer in two-dimensional Janus transition metal dichalcogenides and graphene van der Waals sandwich heterojunction photovoltaic cells[J]. The Journal of Physical Chemistry Letters, 2020, 11(10): 4070-4079. doi:  10.1021/acs.jpclett.0c00706
    [76] FENG X, LI J, MA Y, et al. Construction of interlayer-expanded MoSe2/Nitrogen-doped graphene heterojunctions for ultra-long-cycling rechargeable aluminum storage[J]. ACS Applied Energy Materials, 2021, 4(2): 1575-1582. doi:  10.1021/acsaem.0c02797
    [77] SUN X, LI X, ZENG Y, et al. Improving the stability of perovskite by covering graphene on FAPbI3 surface[J]. International Journal of Energy Research, 2021, 45(7): 10808-10820. doi:  10.1002/er.6564
    [78] Subramanyam B V R S, Alam I, Subudhi S, et al. Enhanced stability of bulk heterojunction organic solar cells by application of few layers of electrochemically exfoliated graphene[J]. Journal of Renewable and Sustainable Energy, 2020, 12: 054101. doi:  10.1063/5.0007960
    [79] Borah C K, Tyagi P K, Kumar S. The prospective application of a graphene/MoS2 heterostructure in Si-HIT solar cells for higher efficiency[J]. Nanoscale Advances, 2020, 2(8): 3231-3243. doi:  10.1039/D0NA00309C
    [80] Lancellotti L, Bobeico E, Noce M D, et al. Graphene as non conventional transparent conductive electrode in silicon heterojunction solar cells[J]. Applied Surface Science, 2020, 525(146443): 1-8. http://www.sciencedirect.com/science/article/pii/S0169433220312009
    [81] WU D, GUO J, DU J, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on Graphene/PdSe2/Germanium heterojunction[J]. ACS Nano, 2019, 13(9): 9907-9917. doi:  10.1021/acsnano.9b03994
    [82] Scagliotti M, Salvato M, De Crescenzi M, et al. Large-area, high-responsivity, fast and broadband graphene/n-Si photodetector[J]. Nanotechnology, 2021, 32(15): 155504. doi:  10.1088/1361-6528/abd789
    [83] XU C, DU Z, HUANG Y, et al. Amorphous-MgGaO film combined with graphene for vacuum-ultraviolet photovoltaic detector[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42681-42687.
    [84] Amarnath M, Gurunathan K. Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature[J]. Journal of Alloys and Compounds, 2021, 857: 157584. doi:  10.1016/j.jallcom.2020.157584
    [85] WANG H, FU Y. Graphene-nanowalls/silicon hybrid heterojunction photodetectors[J]. Carbon, 2020, 162: 181-186. doi:  10.1016/j.carbon.2020.02.023
    [86] YANG J, TANG L, LUO W, et al. Interface engineering of a silicon/graphene heterojunction photodetector via a diamond-like carbon interlayer[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4692-4702. doi:  10.1021/acsami.0c18850
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  692
  • HTML全文浏览量:  815
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-02
  • 修回日期:  2021-12-12
  • 刊出日期:  2021-12-20

目录

    /

    返回文章
    返回