Research on High-precision Blackbody Temperature Control Based on Priority Fusion Algorithm
-
摘要:
为优化红外成像光谱仪探测性能,提出了一种具有用户自定义指标和温控精度达到1.0 mK的优先级融合控制算法(Priority fusion algorithm,PFA),该算法将基础PID、模糊PID和自抗扰控制算法与BP神经网络算法相融合,能够实现高性能黑体温控。通过Simulink仿真实验,仿真结果表明,与传统算法相比,PFA算法的超调量从3.606%下降到0.101%,响应时间从64 min下降到14.4 min,温度控制精度达到1.0 mK。同时搭建了黑体辐射定标平台,物理实验结果与理论模拟结果基本一致。该模型为高精度温控黑体在空间遥感领域的实际应用奠定理论基础,在温控领域具有重大意义。
Abstract:To optimize the detection performance of infrared imaging spectrometers, a priority fusion temperature control algorithm (PFA) with user-defined indicators and a temperature control accuracy of 1.0 mK is proposed. This algorithm combines basic proportional–integral–derivative (PID), fuzzy PID, and self-disturbance rejection control algorithms with the BP neural network algorithm to achieve high-performance blackbody temperature control. Results of Simulink simulation experiments show that compared with traditional algorithms, the overshoot of the PFA algorithm decreases from 3.606% to 0.101%, the response time decreases from 64 min to 14.4 min, and the temperature control accuracy reaches 1.0 mK. Simultaneously, a blackbody radiation calibration platform is built, and the physical experimental results are consistent with the theoretical simulation results. This model lays the theoretical foundation for the practical application of the high-precision temperature controlled blackbody in the field of space remote sensing and has remarkable significance in the field of temperature control.
-
-
表 1 PFA算法与传统算法的比较
Table 1 Comparison between PFA algorithm and traditional algorithm
Basic PID Fuzzy PID ADRC PFA Temp accuracy × √ × √ Faster response time √ √ × √ Faster stabilization time √ √ × √ Anti-interference ability × × √ √ Lower overshoot × × √ √ Application surface √ × × √ 表 2 四种控制算法50℃下仿真效果比较
Table 2 Comparison of simulation effects of four control algorithms at 50℃
Algorithm Overshoot Response time/min Stable time/min Temperature control precision/mK Basic PID 3.606% 6.4 16 4 Fuzzy PID 3.036% 6.8 20 2 ADRC 0.205% 64 64 10 PFA 0.101% 14.4 16 1 表 3 35℃误差评估表
Table 3 35℃ error evaluation table
IAE assess ITAE assess PFA Algorithm 0.3902 3.2520 PID Algorithm 0.6067 4.8748 表 4 100℃误差评估表
Table 4 100℃ error evaluation table
IAE assess ITAE assess PFA Algorithm 9.7455 193.2658 ADRC Algorithm 10.9575 230.7170 -
[1] 晋利兵, 李晓曼, 练敏隆, 等. 黑体与恒星相结合的短波红外遥感器在轨辐射定标简析[J]. 红外技术, 2023, 45(2): 123-128. http://hwjs.nvir.cn/cn/article/id/0fd611eb-5560-4d90-b2e5-4f60299ab871?viewType=HTML JIN Libing, LI Xiaoman, LIAN Minlong, et al. Analysis of in orbit radiation calibration of shortwave infrared remote sensors combining blackbody and stars[J]. Infrared Technology, 2023, 45(2): 123-128. http://hwjs.nvir.cn/cn/article/id/0fd611eb-5560-4d90-b2e5-4f60299ab871?viewType=HTML
[2] Morozova S P, Parfentiev N A, Lisiansky B E, et al. Vacuum variable-temperature blackbody VTBB100[J]. International Journal of Thermophysics, 2008, 29(1): 341-351. DOI: 10.1007/s10765-007-0355-z
[3] 杨词银, 曹立华. 大口径红外光电系统辐射定标及误差分析[J]. 红外与激光工程, 2011, 40(9): 1624-1628. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201109006.htm YANG Ciyin, CAO Lihua Radiation calibration and error analysis of large aperture infrared optoelectronic systems[J]. Infrared and Laser Engineering, 2011, 40(9): 1624-1628. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201109006.htm
[4] YANG D. Design of measurement and control system for a large blackbody radiation source [J]. Infrared, 2018, 8(8): 11-17.
[5] Sundayani, Dyan Franco Sinulingga, Fabiola Magdalena Prasetyawati, et al. PID temperature controlling of thermoelectric based cool box[C]//International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC), 2017: 236-240.
[6] Guillermo Silva, Datta A, Bhattacharyya S P. New results on the Synthesis of PID Controllers[J]. IEEE Transactions on Automatic, 2002, 47(2): 241-252. DOI: 10.1109/9.983352
[7] Saad Kelam, Mohamed Chennafa, Mohammed Belkhiri. Nonlinear robust ADRC control of induction machine[J/OL]. Przeglad Elektrotechniczny, 2023: 209-215, http://www.pe.org.pl/articles/2023/3/37.pdf.
[8] Md Mizanur Rahman, Md Saiful Islam. Design of a fuzzy based pid algorithm for temperature control of an incubator[J]. Journal of Physics: Conference Series, 2021, 1969: 012055. DOI: 10.1088/1742-6596/1969/1/012055
[9] Zaiqi Y, Ning L, Kexin W, et al. Design of fuzzy PID Controller based on sparse fuzzy rule base for CNC machine tools[J]. Machines, 2023, 11(1): 81. DOI: 10.3390/machines11010081
[10] Jacek M, Kenton Graviss. A neural network controller for optimal temperature control of household refrigerators[J]. Intelligent Automation and Soft Computing, 1998, 4(4): 357-372. DOI: 10.1080/10798587.1998.10750743
[11] PAN H, XU Y. A new intelligent decoupling controller based on BP neural network PID with predictive compensation and the research on its application to an air-cushioned headbox[C]// 8th World Congress on Intelligent Control and Automation, 2010: 4731-4735.
[12] Thakor M D, Hadia S K, Kumar A. Precision temperature control through thermoelectric Cooler with PID controller[C]//International Conference on Communications and Signal Processing IEEE, 2015: 1118-1122.
[13] HUANG D X, WANG J H, WANG Z G. The temperature control of planar blackbody radiation source based on nonlinear PID[C]//Advances in Energy, Environment and Materials Science, 2016: 139-144.
[14] 韩京清. 从PID技术到"自抗扰控制"技术[J]. 控制工程, 2002, 9(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF200203004.htm HAN Jingqing. From PID technology to self disturbance rejection control technology[J]. Control Engineering, 2002, 9(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF200203004.htm
[15] ZHOU Keliang, YU Hongyan. Application of fuzzy predictive-PID control in temperature control system of Freeze-dryer for medicine material[C]//Second International Conference on Mechanic Automation and Control Engineering, 2011: 7200-7203.
[16] Cetin S, Akkaya A V. Simulation and hybrid fuzzy-PID contorl for positioning of a hydraulic system[J]. Nonlinear Dynamics, 2015, 61(3): 465-470.
[17] ZHU Z H, SUN H Y. Application of PID controller based on BP neural network in export steam's temperature control system[J]. Journal of Measurement Science & Instrumentation, 2011, 2(1): 84-87.
[18] WANG Z, LI X, LU X. Temperature control based on a single neuron PID algorithm for a blackbody radiation source[C]//IEEE International Conference on Mechatronics and Automation(ICMA), 2017: 220-225.
[19] WU Q, LI X. PID controller parameter setting based on MATLAB/Simulink[J]. Electronic World, 2018, 544(10): 70-71.
[20] Arrieta O, Visioli A, Vilanova R. PID auto-tuning for weighted servo/regulation control operation[J]. Journal of Process Control, 2010, 4(20): 472-480.
[21] 姚立平, 刘伟章, 吴文明, 等. 一种引入滤波的PID控制算法在温控系统的应用[J]. 电子技术应用, 2022, 48(6): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJY202206018.htm YAO Liping, LIU Weizhang, WU Wenming, et al. Application of a PID control algorithm with filtering in temperature control systems[J]. Electronic Technology Applications, 2022, 48(6): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJY202206018.htm
[22] Aftab M S, Shafiq M. Adaptive PID controller based on Lyapunov function neural network for time delay temperature control[C]//GCC Conference and Exhibition, IEEE, 2015: 1-6.