Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors
-
摘要: 随着红外探测器技术不断发展和进步,长波红外成像向大相对孔径和大面阵发展。本文设计了一款用于1024×768@12 μm大面阵,F/#=0.8的大相对孔径长波红外镜头。基于不同红外材料的温度特性以及光学被动消热差理论,此镜头采用3种红外材料组合设计和四面非球面矫正像差设计,满足了各视场的点列图及MTF曲线在-40℃~60℃温度范围内变化不大的无热化要求。该镜头具有光通量高、结构紧凑、工艺性较佳等优点。可用于车载辅助驾驶仪、机载吊舱等领域的态势感知。Abstract: With the advancements in infrared detector technology, long-wavelength infrared imaging lenses having a large relative aperture and large-array are being fabricated. In this study, a long-wavelength infrared athermalized lens with a large relative aperture (F/#=0.8) was designed for a large-array detector (1024 × 68@12 μm). Based on the temperature characteristics of different infrared materials and the theory of optical passive athermalization, the lens has a combination design of three infrared materials and an aberration correction design of four aspherical surfaces. The system is developed such that the spot diagram and modulation transfer function curve of every field of view have only small changes in the temperature range of −40–60℃, thus satisfying the optical non-heating design requirement. The lens has the advantages of a high luminous flux, compact structure, and good manufacturability. It can be used in driver assistance systems and aircraft pods for situation awareness.
-
Keywords:
- athermalization /
- large-array /
- large relative aperture /
- long-wavelength /
- optical design
-
-
表 1 常见长波红外材料参数
Table 1 Common long-wavelength infrared material parameters
Material Refractive index at 10 μm Abbe number 8~12 μm dn/dT at 10 μm and 20℃/(10-6/℃) CTE αg/(10-6/℃) Germanium 4.0028 834 408 6.1 Gasir-1 2.4944 120 49.7 17 Gasir-3 2.6105 115 53 17 Amtir-1 2.5109 113 70.5 12 Amtir-2 2.6027 110 47.2 13.5 IG2 2.4944 119 61 12.1 IG5 2.6033 108 70 14 IG6 2.7781 159 41 20.7 ZnS_IR 2.1920 23 41 6.6 ZnSe 2.4028 52 61 7.1 表 2 光学设计参数
Table 2 Parameters of optical system parameters
Wavelength range/μm 8 to 12 (Central wave 10 μm) Efficient focal length/mm 16.8 F/# 0.8 Field of view 40°×30° Image size(diagonal)/mm 7.68 mm Temperature range/℃ −40 to 60 Classification of athermalization Optical passive 表 3 不同温度下的像面离焦量
Table 3 Image defocus at different temperatures
Temperature/℃ 20 −40 60 Focus shift/μm 6 11 9 表 4 系统在不同温度下的MTF@42 lp/mm
Table 4 MTF of system at 42 lp/mm at different temperatures
Temperature 20℃ -40℃ 60℃ 0 Field MTF 0.500 0.513 0.474 0.7 Field MTF Tangential 0.456 0.429 0.349 Sagittal 0.374 0.248 0.440 1.0 Field MTF Tangential 0.284 0.158 0.219 Sagittal 0.373 0.104 0.458 表 5 系统在不同温度下的弥散斑RMS半径
Table 5 RMS radius of system spot diagrams at different temperatures
Temperature/℃ Field RMS spot radius/μm 20 0 4.242 0.5 5.203 0.7 6.600 1.0 10.947 -40 0 4.187 0.5 5.086 0.7 9.246 1.0 15.206 60 0 6.151 0.5 11.314 0.7 10.560 1.0 12.101 -
[1] 李其昌, 李兵伟, 王宏臣. 非制冷红外成像技术发展动态及其军事应用[J]. 军民两用技术与产品, 2016(21) : 54-57. DOI: 10.3969/j.issn.1009-8119.2016.21.029 LI Qichang, LI Bingwei, WANG Hongchen. Development and military application of uncooled infrared imaging technology[J]. Dual Use Technologies & Products, 2016(21): 54-57. DOI: 10.3969/j.issn.1009-8119.2016.21.029
[2] Doruk Kucukcelebi, Dogan Ugur Sakarya. Comparison of passive athermalization results of LWIR optical designs utilizing different infrared optical materials[C]//Current Developments in Lens Design and Optical Engineering XXI, 2020: 114820K1-K10.
[3] 陈潇. 大面阵长波红外光学无热化镜头的设计[J]. 红外技术, 2018, 40(11): 1061-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201811007.htm CHEN Xiao. Design of long-wavelength infrared athermalization lens for large-array detector[J]. Infrared Technology, 2018, 40(11): 1061-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201811007.htm
[4] 张继艳, 林海峰, 黄章超. 基于硫系玻璃的紧凑式大相对孔径长波红外光学系统无热化设计[J]. 应用光学, 2021(5): 790-795. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202105006.htm ZHANG Jiyan, LIN Haifeng, HUANG Zhangchao. Compact large relative aperture long wavelength infrared athtermalization optical system with chalcogenide glasses[J]. Journal of Applied Optics, 2021(5): 790-795. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202105006.htm
[5] 孙爱平, 龚杨云, 陈忠, 等. 大孔径、大视场辅助驾驶仪红外镜头无热化设计[J]. 红外技术, 2013, 35(10): 617-622. DOI: 10.11846/j.issn.1001_8891.201310004 SUN Aiping, GONG Yangyun, CHEN Zhong, et al. Athermal design of a large-aperture, wide-field assisting pilot infrared lens[J]. Infrared Technology, 2013, 35(10): 617-622. DOI: 10.11846/j.issn.1001_8891.201310004
[6] 岑兆丰, 李晓彤. 光学系统温度效应分析和无热化设计[J]. 激光与光电子学进展, 2009, 46(2): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200902041.htm CEN Zhaofeng, LI Xiaotong. Thermal effect analysis and athermal design of optical system[J]. Laser & Optoelectronics Progress, 2009, 46(2): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200902041.htm
[7] Owens J C. Optical refractive index of air: dependence on pressure, temperature and composition[J]. Applied Optics, 1967, 6(1): 51-9 DOI: 10.1364/AO.6.000051
[8] 白玉琢, 元延婷, 程海娟, 等. 机械补偿式红外温度自适应光机系统的设计[J]. 红外技术, 2012, 34(11): 652-656. https://opticsjournal.net/M/Articles/OJf2c0a11d25a22523/Abstract BAI Yuzhuo, YUAN Yanting, CHENG Haijuan, et al. Design of a mechanical passive athermal infrared lens[J]. Infrared Technology, 2012, 34(11): 652-656. https://opticsjournal.net/M/Articles/OJf2c0a11d25a22523/Abstract
[9] 赵远, 张宇. 光电信号检测原理与技术[M]. 北京: 机械工业出版社, 2005. ZHAO Yuan, ZHANG Yu. Principle and Technology of Photoelectric Signal Detection[M]. Beijing: China Machine Press, 2005.
[10] 吴海清, 田海霞, 崔莉. 大视场、大相对孔径长波红外机械无热化光学系统设计[J]. 红外, 2015, 36(8): 1-4, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201508001.htm WU Haiqing, TIAN Haixia, CUI Li. Design of mechanically athermalized longwave infrared optical system with wide field of view and large relative aperture[J]. Infrared, 2015, 36(8): 1-4, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201508001.htm
[11] 李升辉, 杨长城. 采用衍射元件实现消热差的中波红外光学系统[C]//中国造船工程学会2009年优秀学术论文集, 2010: 257-263. LI Shenghui, YANG Changcheng. Medium wave infrared optical system using diffractive elements to achieve athermalization[C]// Collected Academic Excellent Papers of the Chinese Society of Naval Architects and Marine Engineers in 2009, 2010: 257-263.
[12] 李林. 应用光学: 4版[M]. 北京: 北京理工大学出版社, 2010. LI Lin. Applied Optics[M]. 4th edition, Beijing: Beijing Institute of Technology Press, 2010.
[13] 沈为民, 薛鸣球, 余建军. 大相对孔径长波红外广角物镜[C]//大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集, 2004: 2331-2341. SHEN Weimin, XUE Mingqiu, YU Jianjun. High-speed long-wave infrared wide-angle objectives[C]//Collected Works of Mr. Daheng's 90th Birthday and Collected Papers of the 2004 Academic Conference of the Chinese Optical Society, 2004: 2331-2341.
[14] 周晓斌, 张衡, 文江华, 等. 长波红外光学系统混合被动无热化设计[J]. 红外技术, 2021, 43(9): 836-839. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202109004.htm ZHOU Xiaobin, ZHANG Heng, WEN Jianghua, et al. LWIR optical system design by passive athermalization[J]. Infrared Technology, 2021, 43(9): 836-839. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202109004.htm