Prepared Test and Analysis of Graphene Photocathode by the Spin Coating Method
-
摘要:
为研究石墨烯光阴极的特性,在Hummer方法的基础上引入超声和热水的辅助手段,制备得到石墨烯粉末,以此作为前驱体在阴极窗口玻璃基底上旋涂形成石墨烯薄膜,再使用电子束蒸镀工艺,以镍铬作为蒸镀材料制成环形电极,形成石墨烯光阴极组件。通过原子力显微镜、分光光度计、四探针、光荧光测试仪等技术手段对不同制备和处理工艺的石墨烯光阴极组件进行了研究分析。结果表明:增加分散液浓度和后续高温还原处理均使得石墨烯光阴极组件的吸收率增加;高温还原处理不仅可以提升石墨烯光阴极组件表面平整度,而且不会破坏石墨烯光阴极的晶体结构,还可以有效减少石墨烯光阴极的缺陷,对提高石墨烯光阴极发射特性具有一定促进作用。
Abstract:In this study, the properties of graphene photocathodes were investigated using a modified Hummers' method enhanced by ultrasonic and hot water treatments to synthesize graphene powder. This powder, serving as a precursor, was used to form graphene films on the glass substrates of the photocathode window via spin coating. Subsequently, annular Ni/Cr electrodes were fabricated by electron-beam evaporation, resulting in the assembly of the graphene photocathode. Comprehensive analyses of photocathodes subjected to various preparation and processing techniques were conducted using atomic force microscopy, spectrophotometry, four-point probing, and photoluminescence testing. The results indicate that both the increased dispersion concentration and subsequent temperature reduction treatments significantly enhanced the absorption rate of the photocathode. Importantly, high-temperature reduction not only improves the surface smoothness of the photocathode assembly but also maintains the integrity of its crystal structure, reducing defects. This contributes positively to enhancing the emission characteristics of the graphene photocathode.
-
Keywords:
- graphene /
- photocathode /
- spin coating /
- reduction roasting
-
-
表 1 样品旋涂工艺及后处理方法
Table 1 The spin coating technology and after-treatment method
Sample
numberConcentration of dispersion/(g/ml) Coating speed/rpm After-treatment method a 0.4 6000 - b 0.8 6000 - c 0.4 6000 Heat treatment at 500℃ for 2 hours in hydrogen atmo-sphere d 0.4 6000 - e 0.4 6000 Heat treatment at 500℃ for 2 hours in hydrogen atmosphere 表 2 a, b, c样品表面电阻测试结果
Table 2 The surface resistance of a, b and c sample
Ω/□ Sample number Test1 Test2 Test3 Test4 Test5 Average value a 1825 1783 1865 1653 1921 1809.4 b 1504 1483 1395 1482 1655 1503.8 c 954 875 935 1008 861 926.6 -
[1] LEE C, WEI X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, V321(5887): 385-388. http://sbpmat.org.br/icam2009dir/submission/autor/arquivos/B510.pdf
[2] HU J, RUAN X, CHEN Y P, Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study[J]. Nano Letters, 2009, 9(7): 2730-2735. DOI: 10.1021/nl901231s
[3] 韩天亮, 唐利斌, 左文彬, 等. 石墨烯异质结及其光电器件的研究进展[J]. 红外技术, 2021, 43(12): 1141-1157. http://hwjs.nvir.cn/article/id/2b5c1c4c-eabf-48e0-9c16-63fb546f1ad1 HAN Tianliang, TANG Libin, ZUO Wenbin, et al. Photoelectric properties and applications of graphene research progress of graphene heterojunctions and their optoelectronic devices[J]. Infrared Technology, 2021, 43(12): 1141-1157. http://hwjs.nvir.cn/article/id/2b5c1c4c-eabf-48e0-9c16-63fb546f1ad1
[4] 韩钦, 高恺聪, 任思伟, 等. 石墨烯与典型光导型光电探测器读出电路的对比研究[J]. 红外技术, 2022, 44(2): 123-128. http://hwjs.nvir.cn/article/id/5adff991-e442-4aa2-925d-ba8ee1829af7 HAN Qin, GAO Kaicong, REN Siwei, et al. Photoelectric properties and applications of graphene comparative study on readout circuit for graphene and typical photoconductors photodetectors[J]. Infrared Technology, 2022, 44(2): 123-128. http://hwjs.nvir.cn/article/id/5adff991-e442-4aa2-925d-ba8ee1829af7
[5] 何峰, 徐波, 蓝镇立, 等. 基于石墨烯/硅微米孔阵列异质结的高性能近红外光探测器[J]. 红外技术, 2022, 44(11): 1236-1242. http://hwjs.nvir.cn/article/id/be1f2961-acd4-4320-b738-3ddd1c979a77 HE Feng, XU Bo, LAN Zhengli, et al. High-Performance near-infrared photodetector based on a graphene/silicon microholes array heterojunction[J]. Infrared Technology, 2022, 44(11): 1236-1242. http://hwjs.nvir.cn/article/id/be1f2961-acd4-4320-b738-3ddd1c979a77
[6] 王博, 唐利斌, 张玉平, 等. 黑硅光电探测材料与器件研究进展[J]. 红外技术, 2022, 44(5): 437-452. http://hwjs.nvir.cn/article/id/1b6534f3-1774-4e03-8a32-2797ce325b06 WANG Bo, TANG Libin, ZHANG Yuping, et al. Research progress of black silicon photoelectric detection materials and devices[J]. Infrared Technology, 2022, 44(5): 437-452. http://hwjs.nvir.cn/article/id/1b6534f3-1774-4e03-8a32-2797ce325b06
[7] 莫尊理, 朱小波, 赵国平, 等. 石墨烯的光电性能及其应用[J]. 硅酸盐通报, 2013, 32(9) : 1775-1779. MO Zunli, ZHU Xiaobo, ZHAO Guoping, et al. Photoelectric properties and applications of gaphene [J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1775-1779.
[8] 唐利斌, 姬荣斌, 项金钟. 石墨烯基材料的能带调控技术研究进展[J]. 红外技术, 2015, 37(11): 897-905. http://hwjs.nvir.cn/article/id/hwjs201511001 TANG Libin, JI Rongbin, XIANG Jinzhong. Progress in the tuning techniques of energy band for graphene based materials[J]. Infrared Technology, 2015, 37(11): 897-905. http://hwjs.nvir.cn/article/id/hwjs201511001
[9] 姜小强, 刘智波, 田建国, 等. 石墨烯光学性质及其应用研究进展[J]. 物理学进展, 2017, 37(1): 22-36. JIANG Xiaoqiang, LIU Zhibo, TIAN Jianguo, et al. The optical properties of Graphene and its application [J]. Progress in Physics, 2017, 37(1): 22-36.
[10] 郝秋来, 周立庆. 石墨烯合成及其光电特性[J]. 激光与红外, 2014(12): 1295-1299. HAO Qiulai, ZHOU Liqing. Synthesis and optical-electrical characteristics of grapheme[J]. Laser & Infrared, 2014(12): 1295-1299.
[11] 赵建红, 宋立媛, 姬荣斌, 等. 石墨烯在光电探测领域的研究进展[J]. 红外技术, 2014, 36(8): 609-616. http://hwjs.nvir.cn/article/id/hwjs201408002 ZHAO Jianhong, SONG Liyuan, JI Rongbin, et al. Research progress of graphene in the field of photoelectric detection[J]. Infrared Technology, 2014, 36(8): 609-616. http://hwjs.nvir.cn/article/id/hwjs201408002
[12] 李绍娟, 甘胜, 沐浩然, 等. 石墨烯光电子器件的应用研究进展[J]. 新型炭材料, 2014, 29(5): 329-356. LI Shaojuan, GAN Sheng, MU Haoran, et al. Research progress in graphene use in photonic and optoelectronic devices[J]. New Carbon Materials, 2014, 29(5): 329-356.
[13] 杨花, 曹阳, 贺军辉, 等. 石墨烯红外光电探测器研进展[J]. 激光与光电子学进展, 2015, 52(11): 23-35. YANG Hua, CAO Yang, HE Junhui, et al. Research progress in graphene-based infrared photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(11): 23-35.
[14] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. DOI: 10.1038/nnano.2012.60
[15] Hummers William S, Offeman Richard E. Preparation of graphite oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
[16] 李含健, 刘洁, 任慧, 等. 微纳结构铝热剂薄膜的旋涂制备及其燃烧性能[J]. 兵工学报, 2017, 38(2): 267-272. LI Hanjian, LIU Jie, REN Hui, et al. Spin-coating preparation of micro-and nano-thermite films and their combustion performances[J]. Acta Armamentarii, 2017, 38(2): 267-272.
[17] 郭晖. 积分光荧光测试在三代微光像增强器光阴极制作中的应用[J]. 应用光学, 2000, 21(6): 10-12. GUO Hui. The applcation of integrating fluorescence test manufacturing of photocathode In Gen. 3 low-light-level image intensifier[J]. Journal of Applied Optics, 2000, 21(6): 10-12.
-
期刊类型引用(1)
1. 张锐舟,张丕状,姚金杰,陈明,刘畅. 创新光电二极管前置放大电路设计方法. 国外电子测量技术. 2019(11): 71-76 . 百度学术
其他类型引用(3)