High-Performance Near-Infrared Photodetector Based on a Graphene/Silicon Microholes Array Heterojunction
-
摘要: 本文报道了一种由石墨烯和硅微米孔阵列构筑的异质结探测器,具备高性能近红外光探测能力。通过光刻和反应离子刻蚀技术制备的硅微米孔阵列具有整齐光滑的表面,保证了较低的表面载流子复合速率。同时,孔阵列结构能有效地抑制入射光的反射,增加了有效光照面积,提高了石墨烯/硅异质结的吸收效率,从而提高了器件的光响应度。器件在±3 V偏压下表现出明显的电流整流特性,整流比为4.30×105,在功率密度为4.25 mW/cm2的810 nm入射光照射下器件的开关比达到了9.20×105。在入射光强为118.00 μW/cm2的810 nm光照下,光探测器的电流响应度可达到679.70 mA/W,探测率为3.40×1012 Jones;入射光强为7.00 μW/cm2电压响应度为1.79×106 V/W。更重要的是,该器件具有20.00/21.30 μs的升/降响应速度。相比于商业化硅光电二极管,石墨烯/硅微米孔阵列光电探测器结构简单、制备工艺简便,有望大幅降低制备成本。研究结果显示了石墨烯/硅微米孔阵列异质结探测器在未来低成本、稳定和高效近红外光探测应用方面的巨大潜力。Abstract: This paper reports a heterojunction photodetector constructed from a graphene and silicon microhole array that possesses high-performance near-infrared light detection capabilities. The silicon microhole array constructed by photolithography and reactive ion etching has a smooth surface, which ensures a low surface carrier recombination rate. Meanwhile, the hole-array structure can effectively suppress the reflection of incident light, increase the effective illumination area, and improve the photoabsorption efficiency of the graphene/silicon heterojunction, thereby improving the responsivity of the device. The device exhibits evident current rectification characteristics under a ±3 V bias, with a rectification ratio of 4.30 ×105, and a current on-off ratio of 9.20×105 under irradiation with 810 nm incident light with a power density of 4.25 mW/cm2. Under the illumination of 810 nm with the power intensity of 118 μW/cm2, the current responsivity of the photodetector can reach 679.70 mA/W, and the specific detectivity is 3.40×1012 Jones. The voltage responsivity reaches 1.79×106 V/W at an incident power intensity of 7 μW/cm2. More importantly, the device exhibited a swift response speed with rise/decay times of 20/21.3 μs. Compared with commercial Si-based photodiodes, the graphene/silicon microhole array photodetector has features, including a simple device geometry and simplified fabrication processes, that may significantly reduce the fabrication cost. The results demonstrate the substantial potential of graphene/silicon microhole array heterojunction photodetectors for low-cost, stable, and efficient near-infrared light detection applications in the future.
-
Key words:
- graphene /
- silicon /
- near infrared photodetector /
- heterojunction /
- microstructural
-
图 1 (a) 构造石墨烯/硅微米孔阵列异质结构光探测器的步骤示意图;(b)硅微米孔阵列的侧面扫描电子显微镜(SEM)图;(c) 单层石墨烯的拉曼光谱特性,插图为硅微米孔阵列的顶部SEM图
Figure 1. (a) Schematic diagram of the steps to construct a graphene/silicon microholes array heterojunction photodetector; (b) The side-view scanning electron microscope (SEM) image of silicon microholes array; (c) Raman spectrum of monolayer graphene. Inset shows the top-view SEM image of the silicon microholes array
图 2 (a) 硅平面和硅微米孔阵列在900 nm时漏模共振的电场强度图。i: 顶部俯视图在x-y平面,ii: y-z平面的侧视图;在功率密度为4.25 mW/cm2的810 nm的光照下石墨烯/硅微米孔阵列的(b)I-V图和(c)I-T图;(d) 器件在不同偏压下能带图
Figure 2. (a) Electric field intensity map of leakage mode resonance at 900 nm for silicon plane and silicon microholes array. i: top-view in x-y plane, ii: Side-view in y-z plane; (b) I-V curves and (c) I-T characteristics of graphene/silicon microholes array photodetector under 810 nm illumination with power density of 4.25 mW/cm2; (d) Energy band diagrams of the heterojunction under different bias voltages
图 3 光电响应测试与分析:(a)不同光强下异质结构的I-V曲线;(b) 不同光强下时间响应曲线;(c) 光电流随光强的变化及拟合曲线图;(d) 光电压和电压响应度随光强变化的曲线;(e) 电流响应度随光强变化的曲线,插图是归一化光谱响应
Figure 3. Photoelectric response test and analysis: (a) I-V curves of heterojunctions under different power intensities; (b) Time-dependent photoresponse curves under different power intensities; (c) Fitting curves of photocurrent versus light intensity; (d) Curves of photovoltage and photovoltage responsivity as functions of power intensity; (e) Curves of photocurrent responsivity as a function of power intensity, the inset is the normalized spectral response
图 4 响应速度测试与器件噪声分析:(a) 频率为15 kHz的脉冲光下,异质结构的放大响应曲线;(b) 相对平衡(Vmax-Vmin)/Vmax与入射光频率的关系,显示3 dB带宽频率为15 kHz;(c)器件在不同频率下的噪声电流
Figure 4. Response speed test and analysis of device noise: (a) The amplified response curve of the heterojunction under the pulsed light with a frequency of 15 kHz; (b) The relationship between the relative balance (Vmax−Vmin)/Vmax and the frequency of the incident light, showing that 3dB bandwidth frequency is 15 kHz; (c) The noise current of the device at different frequencies
-
[1] PENG K Q, WANG X, LI L, et al. Silicon nanowires for advanced energy conversion and storage[J]. Nano Today, 2013, 8(1): 75-97. doi: 10.1016/j.nantod.2012.12.009 [2] XIE C, ZHANG X, RUAN K, et al. High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells[J]. Journal of Materials Chemistry A, 2013, 1(48): 15348-15354, . doi: 10.1039/c3ta13750c [3] Garnett E, YANG P. Light trapping in silicon nanowire solar cells[J]. Nano Letters, 2010, 10(3): 1082-1087. doi: 10.1021/nl100161z [4] Yoon H P, Yuwen Y A, Kendrick C E, et al. Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths[J]. Applied Physics Letters, 2010, 96(21): 213503. doi: 10.1063/1.3432449 [5] PENG K Q, WANG X, LI L, et al. High-performance silicon nanohole solar cells[J]. Journal of the American Chemical Society, 2010, 132(20): 6872-6873. doi: 10.1021/ja910082y [6] Jeong S, Garnett E C, WANG S, et al. Hybrid silicon nanocone–polymer solar cells[J]. Nano Letters, 2012, 12(6): 2971-2976. doi: 10.1021/nl300713x [7] Weickert J, Dunbar R, Hesse H, et al. Nanostructured organic and hybrid solar cells[J]. Adv. Mater, 2011, 23: 1810-1828. doi: 10.1002/adma.201003991 [8] TIAN B, ZHENG X, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature, 2007, 449(7164): 885-889, . doi: 10.1038/nature06181 [9] TONG X W, WANG J J, LI J X, et al. Enhancing the device performance of SiNP array/PtTe2 heterojunction photodetector by the light trapping effect[J]. Sensors and Actuators A: Physical, 2021, 322: 112625, doi: 10.1016/j.sna.2021.112625 [10] LIANG F X, ZHAO X Y, JIANG J J, et al. Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2/Pyramid Si heterojunction[J]. Small, 2019, 15(44): 1903831. doi: 10.1002/smll.201903831 [11] Willardson R K, Beer A C. Semiconductors and Semimetals[M]. Academic Press, 1977. [12] 郝秋来, 周立庆. 石墨烯合成及其光电特性[J]. 激光与红外, 2014, 44(12): 1295-1299. doi: 10.3969/j.issn.1001-5078.2014.12.001HAO Qiulai, ZHOU Liqing. Synthesis and optical-electrical characteristics of graphene[J]. Laser and Infrared, 2014, 44(12): 1295-1299. doi: 10.3969/j.issn.1001-5078.2014.12.001 [13] MIAO X, Tongay S, Petterson M, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Letters, 2012, 12(6): 2745-2750. doi: 10.1021/nl204414u [14] 朱淼, 朱宏伟. 石墨烯/硅光电探测器[J]. 自然杂志, 2016, 2(38): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201602005.htmZHU Miao, ZHU Hongwei. Graphene charge-injection photodetectors[J]. Nature Electronics, 2016, 2(38): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201602005.htm [15] XIE C, WANG Y, ZHANG Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19: 41-83. doi: 10.1016/j.nantod.2018.02.009 [16] WANG J J, FU C, CHENG H Y, et al. Leaky mode resonance-induced sensitive ultraviolet photodetector composed of graphene/small diameter silicon nanowire array heterojunctions[J]. ACS Nano, 2021, 15(10): 16729-16737. doi: 10.1021/acsnano.1c06705 [17] 方昕宇, 陈俊. 石墨烯/硅光电探测器的IV及CV特性[J]. 光子学报, 2019, 48(12): 1248004.FANG Xinyu, CHEN Jun. I-V and C-V characteristics of graphene/silicon photodetector [J]. Acta Photonica Sinica, 2019, 48(12): 1248004. -