A Multi-Attribute Fusion Method for Digitizing Infrared Thermal Characteristics of Power Equipment
-
摘要: 本文针对电力设备红外图像诊断中热故障特征提取和数字化表达难题,提出一种多属性融合的电力设备红外热特征数字化方法。通过对电力设备热故障特性和相关诊断文件研究分析,在对图像预处理的基础上,提取图像中关键发热区域的热点温度、热点温差、发热面积、位置信息以及热点群聚现象等热属性值,构建多属性信息融合的过热性故障特征值向量,实现热故障特征数字化描述。以断路器为例对该方法进行了验证分析,结果表明,该方法对典型红外故障图谱具有良好的描述能力,可用于后续大量复杂故障样本情况下的设备热故障智能分类与诊断应用中。Abstract: Aiming at the complex problem of thermal fault feature extraction and digital representation in the infrared image diagnosis of power equipment, a multi-attribute fusion thermal feature digitization method for power equipment is proposed in this study. The method uses heat power equipment fault features and diagnostic files related to research analysis, based on image preprocessing, to extract the images of key areas with high temperatures, heating area, location, and thermal property values, such as hot clustering, building a multiple-attribute information fusion of overheating fault feature vectors to realize a digital description of the thermal fault characteristics. A circuit breaker is used as an example to verify and analyze the proposed method. The results show that the proposed method can effectively describe the typical infrared fault spectrum, and can be used in the intelligent classification and diagnosis of equipment faults in the case of a large number of complex fault samples.
-
Keywords:
- multi-attribute fusion /
- feature extraction /
- eigen vector /
- digital description
-
-
表 1 各区域的T1与T2对比表
Table 1 Comparison table of T1 and T2 for each region
Value of simulation Measured value Phase sequence Area g T1/℃ T3/℃ T2/℃ g T1/℃ T3/℃ T2/℃ a Superior 53 3.8 2.6 1.2 53 3.8 2.6 1.2 Centre 70 8.5 5.9 70 8.4 5.8 Below 48 2.6 0 48 2.6 0 b Superior 61 6.1 3.8 2.3 62 6.2 3.7 2.5 Centre 213 46.6 42.8 213 46.5 42.8 Below 53 3.8 0 52 3.7 0 c Superior 68 8.0 3.5 4.5 68 7.9 3.5 3.4 Centre 255 57.8 54.3 255 57.8 54.3 Below 51 3.5 0 51 3.5 0 表 2 断路器故障等级判断标准
Table 2 Criteria for fault grade judgment of circuit breaker
Failure level Common defect Serious defects Critical defect Failure criterion/℃ 0<T<55 55≤T≤80 T>80 表 3 部分电力设备热故障特征提取结果
Table 3 Thermal fault feature extraction results of powerequipment
Amount T1 T2 Si L M 1 48.5 45 0.008 [1.3,80,38] 2 42.8 38.3 0.001 [1.3,38.2,21.14] 2 50.6 28.3 0.009 [0.14,75,24.67] 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 149 46.5 42.8 0.009 [1.4,-47,51] 2 150 57.8 54.3 0.01 [1.3,-63,58] -
[1] 邹辉, 黄福珍. 基于FAsT-Match算法的电力设备红外图像分割[J]. 红外技术, 2016, 38(1): 21-27. http://hwjs.nvir.cn/article/id/hwjs201601004 ZOU Hui, HUANG Fuzhen. Infrared image segmentation of power equipment based on fast-match algorithm[J]. Infrared Technology, 2016, 38(1): 21-27. http://hwjs.nvir.cn/article/id/hwjs201601004
[2] 张恒源. 基于红外图像处理的变电站设备故障诊断方法研究[D]. 长春: 长春工业大学, 2019. ZHANG Hengyuan. Research on substation equipment fault diagnosis method based on infrared image processing[D]. Changchun: Changchun University of Technology, 2019.
[3] 余彬, 万燕珍, 陈思超, 等. 基于密度相似因子的电力红外图像分割方法[J]. 红外技术, 2017, 39(12): 1139-1143. http://hwjs.nvir.cn/article/id/hwjs201712012 YU Bin, WAN Yanzhen, CHEN Sichao, et al. Power infrared image segmentation based on density similarity factor[J]. Infrared Technology, 2017, 39(12): 1139-1143. http://hwjs.nvir.cn/article/id/hwjs201712012
[4] 腾云, 陈双, 邓洁清, 等. 智能巡检机器人系统在苏通GIL综合管廊工程中的应用[J]. 高电压技术, 2019, 45(2): 393-401. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201902006.htm TENG Yun, CHEN Shuang, DENG Jieqing, et al. Application of intelligent inspection robot system in Sutong GIL Integrated Pipe Gallery Project[J]. High Voltage Technology, 2019, 45(2): 393-401. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201902006.htm
[5] 王有元, 李后英, 梁玄鸿, 等. 基于红外图像的变电设备热缺陷自调整残差网络诊断模型[J]. 高电压技术, 2020, 46(9): 3000-3007. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202009002.htm WANG Youyuan, LI Houying, LIANG Xuanhong, et al. Self-adjusting residual network diagnosis model for thermal defects of transformer equipment based on infrared image[J]. High Voltage Technology, 2020, 46(9): 3000-3007. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202009002.htm
[6] 王佳林, 崔昊杨, 许永鹏, 等. 基于SOM神经网络的变电站设备红外热像诊断研究[J]. 上海电力学院学报, 2016, 32(1): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DYXY201601017.htm WANG Jialin, CUI Haoyang, XU Yongpeng, et al. Research on infrared thermal diagnosis of substation equipment based on SOM neural network[J]. Journal of Shanghai University of Electric Power, 2016, 32(1): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DYXY201601017.htm
[7] 林颖, 郭志红, 陈玉峰. 基于卷积递归网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2015, 43(16): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201516013.htm LIN Ying, GUO Zhihong, CHEN Yufeng. Infrared fault diagnosis of current transformer based on convolutional recursive network[J]. Power System Protection and Control, 2015, 43(16): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201516013.htm
[8] Huda ASN, Taib S. A comparative study of MLP networks using backpropagation algorithms in electrical equipment thermography[J]. Arab. J. Sci. Eng., 2014, 39: 3873-3885. DOI: 10.1007/s13369-014-0989-7
[9] ZOU H, HUANG F. A novel intelligent fault diagnosis method for electrical equipment using infrared thermography[J]. Infrared Physics & Technology, 2015, 73: 29-35. http://www.onacademic.com/detail/journal_1000038244612810_35a3.html
[10] LI B, ZHU X, ZHAO S, et al. HV power equipment diagnosis based on infrared imaging analyzing[C]//2006 International Conference on Power System Technology, IEEE, 2006: 1-4.
[11] 彭向阳, 梁福逊, 钱金菊, 等. 基于机载红外影像纹理特征的输电线路绝缘子自动定位[J]. 高电压技术, 2019, 45(3): 922-928. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201903033.htm PENG Xiangyang, LIANG Fuxun, QIAN Jinju, et al. Automatic location of transmission line insulator based on texture feature of airborne infrared image[J]. High Voltage Technology, 2019, 45(3): 922-928. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201903033.htm
[12] LIU Y, PEI S T, FU W P, et al. The discrimination method as applied to a deteriorated porcelain insulator used in transmission lines on the basis of a convolution neural network[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(6): 3559-3566. DOI: 10.1109/TDEI.2017.006840
[13] 李佐胜, 姚建刚, 杨迎建, 等. 基于方差分析的绝缘子红外热像特征选择方法[J]. 电网技术, 2009, 33(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200901024.htm LI Zuosheng, YAO Jiangang, YANG Yingjian, et al. Infrared thermal image feature selection method of insulator based on ANOVA[J]. Power System Technology, 2009, 33(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200901024.htm
[14] 李鑫, 崔昊杨, 许永鹏, 等. 电力设备IR图像特征提取及故障诊断方法研究[J]. 激光与红外, 2018, 48(5): 659-664. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201805023.htm LI Xin, CUI Haoyang, XU Yongpeng, et al. Research on power equipment IR image feature extraction and fault diagnosis method[J]. Laser & Infrared, 2018, 48(5): 659-664. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201805023.htm
[15] 熊芬芳. 基于图像处理技术的电气设备故障诊断方法研究[D]. 上海: 东华大学, 2015. XIONG Fenfang. Study on fault diagnosis method of electrical equipment based on image processing technology[D]. Shanghai: Donghua University, 2015.
[16] 王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(S1): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2020S1034.htm WANG Xuhong, LI Hao, FAN Shaosheng, et al. Automatic abnormal detection method of infrared image of power equipment based on improved SSD[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2020S1034.htm
[17] 张晓霞. 变电站电压致热型设备的红外测温诊断[J]. 科技信息, 2010(25): 757-758. https://www.cnki.com.cn/Article/CJFDTOTAL-KJXX201025603.htm ZHANG Xiaoxia. Infrared temperature diagnosis of voltage heating equipment in substation[J]. Science and Technology Information, 2010(25): 757-758. https://www.cnki.com.cn/Article/CJFDTOTAL-KJXX201025603.htm
[18] 唐佳能, 金鑫, 张建志, 等. DL/T 664—2016《带电设备红外诊断应用规范》的应用分析[J]. 智能电网, 2017, 5(9): 924-928. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNDW201709016.htm TANG Jianeng, JIN Xin, ZHANG Jianzhi, et al. Application analysis of DL/T 664-2016 infrared diagnosis application specification for live equipment[J]. Smart Power Grid, 2017, 5(9): 924-928. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNDW201709016.htm
[19] 王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(S1): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2020S1034.htm WANG Xuhong, LI Hao, FAN Shaosheng, et al. Automatic abnormal detection method of infrared image of power equipment based on improved SSD[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2020S1034.htm
[20] 王小芳, 毛华敏. 一种复杂背景下的电力设备红外图像分割方法[J]. 红外技术, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004 WANG Xiaofang, MAO Huamin. Infrared Image Segmentation Method for Power Equipment under Complex Background[J]. Infrared Technology, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004
[21] 王小芳, 康琛, 程宏波, 等. 基于红外图像处理的变电设备热故障自动诊断方法[J]. 华东交通大学学报, 2019, 36(3): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201903015.htm WANG Xiaofang, KANG Chen, CHENG Hongbo, et al. Automatic thermal fault diagnosis method of substation equipment based on infrared image processing[J]. Journal of East China Jiaotong University, 2019, 36(3): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201903015.htm
[22] 许晓路, 周文, 周东国, 等. 基于PCNN分层聚类迭代的故障区域自动提取方法[J]. 红外技术, 2020, 42(8): 809-814. http://hwjs.nvir.cn/article/id/hwjs202008017 XU Xiaolu, ZHOU Wen, ZHOU Dongguo, et al. Automatic fault area extraction method based on PCNN hierarchical clustering iteration[J]. Infrared Technology, 2020, 42(8): 809-814. http://hwjs.nvir.cn/article/id/hwjs202008017
-
期刊类型引用(2)
1. 杨小琴,朱玉全. 基于CNN的轻量级神经网络单幅图像超分辨率研究. 计算技术与自动化. 2022(01): 98-105 . 百度学术
2. 郭军伟,孙璐,王璐. 道路交通事故犯罪现场中模糊图像增强处理. 计算机仿真. 2020(11): 122-126 . 百度学术
其他类型引用(3)