Infrared Image Enhancement for Power Equipment Based on Fusion Color Model Space
-
摘要: 电力设备红外图像普遍存在亮度暗、对比度低等问题,针对此现象,提出了一种融合彩色模型空间的图像增强算法。该方法将图像的对比度与亮度增强转换至HSV与RGB空间中分别进行处理:RGB空间中,首先预处理图像中的高灰度级,并采取混合滤波的方式抑制图中噪声,然后使用增强函数提高图像亮度,最后将增强图像转换至HSV空间中并提取H、S、V三分量图;HSV空间中,采用伽马变换和CLAHE(contrast limited adaptive histogram equalization)算法实现V分量的亮度提升,并采取非线性饱和度矫正函数处理S分量提升图像对比度,最后将处理分量与提取分量进行对应融合得到HSV空间中的增强图像,并将其转回RGB空间中得到最终的输出图像。实验结果表明,本文算法能明显地提升红外图像的亮度与对比度,增强后的3组图像其灰度均值和标准差平均值分别为115.94和78.65,相对于原图的平均值分别提升了81.59和36.17。
-
关键词:
- 电力设备红外图像 /
- 图像增强 /
- 彩色模型空间融合 /
- HSV、RGB分量增强
Abstract: There are numerous problems with infrared imaging using power equipment, such as dark brightness and low contrast. To solve these problems, an enhancement algorithm using a color-model space was proposed. In this method, the contrast and brightness enhancement of the image are processed in the HSV and RGB spaces, respectively. First, the high gray levels of the image are preprocessed, and the mixed filtering method is adopted to suppress the noise in the image. An enhancement function is used to improve the brightness of the image. Finally, the enhanced image is converted into the HSV space, the H, S and V component images are extracted, the gamma transform and CLAHE algorithms are used to improve the brightness of V component, and a nonlinear saturation correction function is used to process component S to improve the image contrast. Finally, the enhanced image in the HSV space is obtained by the corresponding fusion of each processing and extraction component, and is transferred back to the RGB space to obtain the final output image. Experimental results show that the proposed algorithm can significantly improve the contrast and brightness of infrared images. The average gray mean and standard deviation of the enhanced 6 groups of images were 115.94 and 78.65, respectively, which are improvements of 81.59 and 36.17 compared with the original image. -
-
表 1 客观评价结果
Table 1 Objective evaluation results
Evaluation criterion Comparison algorithm Image 1 Image 2 Image 3 μ Original 15.42 29.26 58.35 HE 178.21 136.75 129.58 Homomorphic 31.82 55.50 69.67 MSR 27.05 46.70 70.25 CLAHE 26.88 44.61 48.08 AGCWD 25.57 40.73 92.89 Reference [12] 45.70 86.46 140.67 Proposed 68.89 132.59 146.33 δ Original 38.84 55.38 33.21 HE 35.11 69.55 71.79 Homomorphic 65.54 72.37 44.11 MSR 51.60 56.61 46.43 CLAHE 56.31 62.23 49.29 AGCWD 64.34 74.70 55.29 Reference [12] 81.23 84.28 59.44 Proposed 89.39 81.35 65.21 -
[1] 张丽娜. 红外测温技术在变电站运维中的应用探讨[J]. 电子测试, 2021(21): 119-120. DOI: 10.3969/j.issn.1000-8519.2021.21.041 ZHANG Lina. Application of infrared temperature measurement technology in substation operation and maintenance[J]. Electronic Test, 2021(21): 119-120. DOI: 10.3969/j.issn.1000-8519.2021.21.041
[2] 赵天成, 罗吕, 杨代勇, 等. 多属性融合的电力设备红外热特征数字化方法[J]. 红外技术, 2021, 43(11): 1097-1103. http://hwjs.nvir.cn/article/id/fdbced71-89e2-4d42-8252-4713304b6e1c ZHAO Tiancheng, LUO Lyu, YANG Daiyong, et al. A multi-attribute fusion method for digitizing infrared thermal characteristics of power equipment[J]. Infrared Technology, 2021, 43(11): 1097-1103. http://hwjs.nvir.cn/article/id/fdbced71-89e2-4d42-8252-4713304b6e1c
[3] 曾军, 王东杰, 范伟, 等. 基于红外热成像的电气设备组件识别研究[J]. 红外技术, 2021, 43(7): 679-687. http://hwjs.nvir.cn/article/id/58024112-8052-43d6-8a2d-dd2460dfa5e1 ZENG Jun, WANG Dongjie, FAN Wei, et al. Research on component identification for electrical equipment based on infrared thermography[J]. Infrared Technology, 2021, 43(7): 679-687. http://hwjs.nvir.cn/article/id/58024112-8052-43d6-8a2d-dd2460dfa5e1
[4] 魏然然, 詹伟达, 朱德鹏, 等. 改进多尺度的Retinex红外图像增强[J]. 液晶与显示, 2021, 36(3): 465-474. WEI Ranran, ZHAN Weida, ZHU Depeng, et al. Improved multi-scale Retinex infrared image enhancement[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 465-474.
[5] 程铁栋, 卢晓亮, 易其文, 等. 一种结合单尺度Retinex与引导滤波的红外图像增强方法[J]. 红外技术, 2021, 43(11): 1081-1088. http://hwjs.nvir.cn/article/id/b49a0a09-e295-40e6-9736-24a58971206e CHENG Tiedong, LU Xiaoliang, YI Qiwen, et al. Research on infrared image enhancement method combined with single-scale Retinex and guided image filter[J]. Infrared Technology, 2021, 43(11): 1081-1088. http://hwjs.nvir.cn/article/id/b49a0a09-e295-40e6-9736-24a58971206e
[6] 翟海祥, 何嘉奇, 王正家, 等. 改进Retinex与多图像融合算法用于低照度图像增强[J]. 红外技术, 2021, 43(10): 987-993. http://hwjs.nvir.cn/article/id/23500140-4bab-40b3-9bef-282f14dc105e ZHAI Haixiang, HE Jiaqi, WANG Zhengjia, et al. Improved Retinex and multi-image fusion algorithm for low illumination image enhancement[J]. Infrared Technology, 2021, 43(10): 987-993. http://hwjs.nvir.cn/article/id/23500140-4bab-40b3-9bef-282f14dc105e
[7] 徐武, 杨昊东, 汤弘毅, 等. 基于改进加权引导滤波的红外图像增强算法[J]. 激光杂志, 2022, 43(1): 101-106. XU Wu, YANG Haodong, TANG Hongyi, et al. Infrared image enhancement algorithm based on improved weighted guided filtering[J]. Laser Journal, 2022, 43(1): 101-106.
[8] 李牧, 周瑞杰, 田哲嘉. 基于直方图的热红外图像增强方法[J]. 红外技术, 2020, 42(9): 880-885. http://hwjs.nvir.cn/article/id/hwjs202009010 LI MU, ZHOU Ruijie, TIAN Zhejia. A thermal infrared image enhancement method based on histogram[J]. Infrared Technology, 2020, 42(9): 880-885. http://hwjs.nvir.cn/article/id/hwjs202009010
[9] 陈尧, 尹丽菊, 咸日常, 等. 基于NSCT和改进Pal_King算法的电力设备红外图像增强方法[J]. 计算机应用与软件, 2021, 38(11): 236-241, 287. CHEN Yao, YIN Liju, XIAN Richang, et al. Infrared image enhancement method for power equipment based on NSCT and improved Pal_ King algorithm[J]. Computer Applications and Software, 2021, 38(11): 236-241, 287.
[10] 朱颖, 王昕, 王爱平, 等. 基于MVOtsu和对数型模糊隶属度函数的电力设备NSST域红外图像增强[J]. 高压电器, 2020, 56(9): 179-185. ZHU Ying, WANG Xin, WANG Aiping, et al. Electrical equipment infrared image enhancement of NSST domain based on MVOtsu and log⁃type fuzzy membership function[J]. High Voltage Apparatus, 2020, 56(9): 179-185.
[11] 刘陈瑶, 胡梦竹, 张龙飞. 基于改进CLAHE的SF6红外图像增强[J]. 光学技术, 2021, 47(1): 107-112. LIU Chenyao, HU Mengzhu, ZHANG Longfei. Infrared image enhancement of SF6 based on improved CLAHE[J]. Optical Technique, 2021, 47(1): 107-112.
[12] 谭宇璇, 樊绍胜. 基于图像增强与深度学习的变电设备红外热像识别方法[J]. 中国电机工程学报, 2021, 41(23): 7990-7998. TAN Yuxuan, FAN Shaosheng. Infrared thermal image recognition of substation equipment based on image enhancement and deep learning[J]. Proceedings of the CSEE, 2021, 41(23): 7990-7998.
[13] 陈基顺, 肖立军, 万新宇, 等. 复杂环境下电力设备红外热图增强与分割研究[J]. 红外技术, 2018, 40(11): 1112-1118. http://hwjs.nvir.cn/article/id/hwjs201811016 CHEN Jishun, XIAO Lijun, WAN Xinyu, et al. Research on enhancement and segmentation of power equipment infrared heat map in complex environment[J]. Infrared Technology, 2018, 40(11): 1112-1118. http://hwjs.nvir.cn/article/id/hwjs201811016
[14] 刘寿鑫, 龙伟, 李炎炎, 等. 基于HSV色彩空间的低照度图像增强[J]. 计算机工程与设计, 2021, 42(9): 2552-2560. LIU Shouxin, LONG Wei, LI Yanyan, et al. Low-light image enhancement based on HSV color space[J]. Computer Engineering and Design, 2021, 42(9): 2552-2560.
[15] 王利娟, 常霞, 任旺. 基于加权直方图均衡化彩色图像增强仿真[J]. 计算机仿真, 2021, 38(12): 126-131. WANG Lijuan, CHANG Xia, RENG Wang. Color image enhancement simulation based on weighted histogram equalization[J]. Computer Simulation, 2021, 38(12): 126-131.
[16] 刘智嘉, 夏寅辉, 杨德振, 等. 基于中值滤波器的红外图像噪声处理的改进方法[J]. 激光与红外, 2019, 49(3): 376-380. LIU Zhijia, XIA Yinhui, YANG Dezhen, et al. An improved method for infrared image noise processing based on median filter[J]. Laser & Infrared, 2019, 49(3): 376-380.
[17] 刘寿鑫, 龙伟, 李炎炎, 等. 融合彩色模型空间的非线性低照度图像增强[J]. 四川大学学报: 自然科学版, 2021, 58(1): 57-64. LIU Shouxin, LONG Wei, LI Yanyan, et al. Non-linear low-light image enhancement based on fusion color model space[J]. Journal of Sichuan University: Natural Science Edition, 2021, 58(1): 57-64.
-
期刊类型引用(3)
1. 张旭辉,解彦彬,杨文娟,张超,万继成,董征,王彦群,蒋杰,李龙. 煤矿井下采掘工作场景非均质图像去雾与增强技术. 煤田地质与勘探. 2025(01): 245-256 . 百度学术
2. 张福林,何云,彭望,曹胜中,刘卫国,孙鹏. 基于改进直方图和模糊估计的多层次水下图像增强方法. 无线电工程. 2025(03): 540-547 . 百度学术
3. 梁秀满,赵佳阳,于海峰. 基于YOLOv8的轻量化水下目标检测算法. 红外技术. 2024(09): 1015-1024 . 本站查看
其他类型引用(0)