Shape Adaptation Low Rank Representation for Thermal Fault Diagnosis of Power Equipments
-
摘要: 本文提出一种形状自适应低秩表示的电力设备热故障诊断方法。该方法通过联合超像素分割和低秩表示技术进行热故障诊断。首先,使用主成分分析算法对输入的红外图像进行变换,并对第一主成分进行超像素分割处理,将红外图像自适应地分割为若干非重叠的超像素。然后,采用低秩表示技术对逐个超像素进行热故障诊断,通过充分挖掘空间结构信息和红外温度信息,优化提升热故障诊断精度。实验结果表明,与其他传统热故障诊断方法相比,本文提出的方法在热故障诊断精度上具有较大的优势,满足电力设备红外巡检的应用需求。Abstract: This work introduces a thermal fault diagnosis method that integrates superpixel segmentation and low-rank representation for diagnosis. The proposed method comprises two main steps. First, an input infrared image is transformed using a principal component analysis (PCA) algorithm, and a superpixel segmentation method is employed for the first principal component (PC). The first PC is divided into non-overlapping homogeneous superpixels. Then, the thermal fault region is detected by employing low-rank representation in a superpixel-by-superpixel manner. Experimental results show that the proposed diagnosis method has a better detection performance than that of current state-of-the-art detectors.
-
-
表 1 不同诊断方法的AUC指标
Table 1 AUC values of different diagnosis methods
Test images RX LDP LRR SS-LRR 1 0.9707 0.8312 0.8574 0.9852 2 0.9901 0. 9132 0. 9324 0.9925 3 0.9893 0. 9253 0. 9486 0.9935 表 2 不同诊断方法的运行时间
Table 2 Running time of different diagnosis methods
s Test images RX LDP LRR SS-LRR 1 0.59 0.75 0.47 1.66 2 0.53 0.61 0.34 1.52 3 0.84 0.98 0.56 1.81 -
[1] 刘嵘, 刘辉, 贾然, 等. 一种智能型电网设备红外诊断系统的设计[J]. 红外技术, 2020, 42(12): 198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69 LIU Rong, LIU Hui, JIA Ran, et al. Design of intelligent infrared di-agnosis system for power grid equipment[J]. Infrared Technology, 2020, 42(12): 1198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69
[2] 张文峰, 彭向阳, 陈锐民, 等. 基于无人机红外视频的输电线路发热缺陷智能诊断技术[J]. 电网技术, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm ZHANG Wenfeng, PENG Xiangyang, CHEN Ruiming, et al. Intelligent diagnostic techniques of abnormal heat defect in transmission lines based on unmanned helicopter infrared video[J]. Power System Technology, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm
[3] 王淼, 杜伟, 孙鸿博, 等. 基于红外图像识别的输电线路故障诊断方法[J]. 红外技术, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015 WANG Miao, DU Wei, SUN Hongbo, et al. Transmission line fault diagnosis method based on infrared image recognition[J]. Infrared Technology, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015
[4] 胡洛娜, 彭云竹, 石林鑫. 核猫群红外图像异常检测方法在电力智能巡检中的应用[J]. 红外技术, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013 HU Luona, PENG Yunzhu, SHI Linxin. Anomaly detection method of infrared images based on kernel cat swarm optimization clustering with application in intelligent electrical power inspection[J]. Infrared Technology, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013
[5] 魏钢, 冯中正, 唐跃林, 等. 输变电设备红外故障诊断技术与试验研究[J]. 电气技术, 2013, 14(6): 75-78. DOI: 10.3969/j.issn.1673-3800.2013.06.020 WEI Gang, FENG Zhongzheng, TANG Yuelin, et al. The infrared diagnostic technology of power transmission devices and experimen-tal study[J]. Electrical Technology, 2013, 14(6): 75-78. DOI: 10.3969/j.issn.1673-3800.2013.06.020
[6] 李鑫, 崔昊杨, 霍思佳, 等. 基于粒子群优化法的Niblack电力设备红外图像分割[J]. 红外技术, 2018, 40(8): 780-785. http://hwjs.nvir.cn/article/id/hwjs201808010 LI Xin, CUI Wuyang, HUO Siyang. Niblack's method for infrared image segmentation of electrical equipment improved by particle swarm optimization[J]. Infrared Technology, 2018, 40(8): 780-785. http://hwjs.nvir.cn/article/id/hwjs201808010
[7] 林颖, 郭志红, 陈玉峰. 基于卷积递归网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2017, 45(16): 87-94. DOI: 10.7667/j.issn.1674-3415.2015.16.013 LIN Ying, GUO Zhihong, CHEN Yufeng. Convolutional-recursive network based current transformer infrared fault image diagnosis[J]. Power System Protection and Control, 2015, 45(16): 87-94. DOI: 10.7667/j.issn.1674-3415.2015.16.013
[8] 黄志鸿, 吴晟, 肖剑, 等. 基于引导滤波的电力设备热故障诊断方法研究[J]. 红外技术, 2021, 43(9): 910-915. http://hwjs.nvir.cn/article/id/cb2a71f1-cd7c-4e76-977b-b6f7472b905d HUANG Zhihong, WU Sheng, XIAO Jian, et al. Thermal fault dagnosis of power equipments based on guided filter[J]. Infrared Technology, 2021, 43(9): 910-915. http://hwjs.nvir.cn/article/id/cb2a71f1-cd7c-4e76-977b-b6f7472b905d
[9] 常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网[J]. 自动化学报, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm CHANG Liang, DENG Xiaoming, ZHOU Mingquan, et al. Convolu-tional neural networks in image understanding[J]. Acta Automatica Sinica, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm
[10] 魏东, 龚庆武, 来文青, 等. 基于卷积神经网络的输电线路区内外故障判断及故障选相方法研究[J]. 中国电机工程学报, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm WEI Dong, LONG Qinwu, LAI Wenqing, et al. Research on internal and external fault diagnosis and fault-selection of transmission line based on convolutional neural network[J]. Proceedings of the CSEE, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm
[11] 周可慧, 廖志伟, 肖异瑶, 等. 基于改进CNN的电力设备红外图像分类模型构建研究[J]. 红外技术, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm ZHOU Kehui, LIAO Zhiwei, XIAO Yiyao, et al. Construction of infrared image classification model for power equipments based on improved CNN[J]. Infrared Technology, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm
[12] LIU M, Tuzel O, Ramalingam S, et al. Entropy rate superpixel segmentation[C]//Pattern Recognit., 2011: 2097-2104.
[13] YUAN X, YANG J. Sparse and low-rank matrix decomposition via alternating direction methods[J]. Pacific. J. Optim, 1990, 9(1): 1760-1770.
[14] Reed I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustic Speech Signal Processing, 1990, 38(10): 1760-1770. DOI: 10.1109/29.60107
[15] KANG X, ZHANG X, LI S, et al. Hyperspectral anomaly detection with attribute and edge-preserving filters[J]. IEEE Trans. Geosci. Remote Sens. , 2017, 55(10): 5600-5611. DOI: 10.1109/TGRS.2017.2710145
[16] XU Y, WU Z, LI J, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Trans. Geosci Remote Sens. , 2016, 54(4): 1990 DOI: 10.1109/TGRS.2015.2493201
[17] 蒋昀宸, 樊绍胜, 陈骏星溆. 带电作业智能新技术及其应用现状[J]. 湖南电力, 2018, 38(5): 1-4. DOI: 10.3969/j.issn.1008-0198.2018.05.001 JIANG Yunchen, FAN Zhaosheng, CHEN Junxingxu. Smart new-technologies and applications for live work[J]. Hunan Electric Power, 2018, 38(5): 1-4. DOI: 10.3969/j.issn.1008-0198.2018.05.001
-
期刊类型引用(6)
1. 漆云海,李绍楠,杜保林,张鹏,胡磊力. 红外双波段双层衍射定焦光学系统设计. 电光与控制. 2024(05): 108-111 . 百度学术
2. 亓晨,靳阳明,谢晓喻,侯辉辉,李永生. 共光路红外双波段小型化光学镜头分析与设计. 红外与激光工程. 2024(04): 157-164 . 百度学术
3. 田晓航,薛常喜. 小F数红外双波段无热化折衍摄远物镜设计. 光学学报. 2022(14): 181-187 . 百度学术
4. 朱广亮,杨林,刘灿. 制冷型中波红外光学系统无热化设计. 光学与光电技术. 2021(02): 98-102 . 百度学术
5. 王烨菲,程艳萍,姚园,李道京,于潇. 薄膜衍射消热差红外光学系统设计. 红外技术. 2021(05): 422-428 . 本站查看
6. 李杰,罗辉,李金铖,吴晗平. 基于谐衍射与自由曲面的机载红外双波段成像光学系统设计. 光子学报. 2021(12): 148-163 . 百度学术
其他类型引用(6)