形状自适应低秩表示的电力设备热故障诊断方法研究

Shape Adaptation Low Rank Representation for Thermal Fault Diagnosis of Power Equipments

  • 摘要: 本文提出一种形状自适应低秩表示的电力设备热故障诊断方法。该方法通过联合超像素分割和低秩表示技术进行热故障诊断。首先,使用主成分分析算法对输入的红外图像进行变换,并对第一主成分进行超像素分割处理,将红外图像自适应地分割为若干非重叠的超像素。然后,采用低秩表示技术对逐个超像素进行热故障诊断,通过充分挖掘空间结构信息和红外温度信息,优化提升热故障诊断精度。实验结果表明,与其他传统热故障诊断方法相比,本文提出的方法在热故障诊断精度上具有较大的优势,满足电力设备红外巡检的应用需求。

     

    Abstract: This work introduces a thermal fault diagnosis method that integrates superpixel segmentation and low-rank representation for diagnosis. The proposed method comprises two main steps. First, an input infrared image is transformed using a principal component analysis (PCA) algorithm, and a superpixel segmentation method is employed for the first principal component (PC). The first PC is divided into non-overlapping homogeneous superpixels. Then, the thermal fault region is detected by employing low-rank representation in a superpixel-by-superpixel manner. Experimental results show that the proposed diagnosis method has a better detection performance than that of current state-of-the-art detectors.

     

/

返回文章
返回