视觉SLAM在动态场景下的图像处理方法

Image Processing Method for Visual Simultaneous Localization and Mapping

  • 摘要: SLAM一直是机器人领域的研究热点,近年来取得了万众瞩目的进步,但很少有SLAM算法考虑到动态场景的处理。针对视觉SLAM场景中动态目标的处理,提出一种在动态场景下的图像处理方法。将基于深度学习的语义分割算法引入到ORB_SLAM2方法中,对输入图像进行分类处理的同时剔除人身上的特征点。基于已经剔除特征点的图像进行位姿估计。在TUM数据集上与ORB_SLAM2进行对比,在动态场景下的绝对轨迹误差和相对路径误差精度提高了90%以上。在保证地图精度的前提下,改善了地图的适用性。

     

    Abstract: Simultaneous localization and mapping(SLAM) has always been a research hotspot in the robotics field. In recent years, remarkable progress has been made in SLAM research, but few SLAM algorithms have considered the processing of dynamic scenes. Therefore, in this study, an image processing method for dynamic target processing in a visual SLAM scene is proposed. The semantic segmentation algorithm based on deep learning was introduced into the ORB_SLAM2 method and input image classification processing was accomplished while removing the feature points on the body. Pose estimation was performed based on images with eliminated feature points. Compared to ORB_SLAM2 on the TUM dataset, the absolute trajectory error and relative path error accuracy were improved by more than 90% in the dynamic scene. To ensure the accuracy of the generated map, the applicability of the map was improved.

     

/

返回文章
返回