Infrared Blade Image Stitching Algorithm for Wind Farm UAV Inspection
-
摘要: 针对无人机拍摄叶片红外图像背景冗余信息较多、拼接精度不高等问题,本文提出一种基于形态学改进Chan-Vese分割与局部特征匹配的红外风机叶片图像拼接算法,首先,对图像进行中值滤波降噪,使用形态学运算改进基于Chan-Vese模型的水平集算法,生成表达主体的掩膜。基于掩膜去除冗余背景提取局部Harris特征点;对掩膜进行二次形态学腐蚀处理,抑制边界锯齿像素上的伪特征点;最后,使用暴力匹配及随机抽样一致(Random Sample Consensus, RANSAC)算法筛选出有效匹配点对,计算单应性矩阵实现匹配拼接。与传统图像分割下Harris拼接算法相比,本文改进后的算法拼接精度有明显提高,在不同的测试场景下显示出较强鲁棒性。Abstract: Aiming at more redundant background information and low stitching accuracy of the infrared images of the blades taken by UAV (Unmanned Aerial Vehicle), In this study, we proposed a stitching algorithm for infrared wind turbine blade images combining the Chan-Vese model and morphology. First, we subjected the image to median filtering and noise reduction, and a morphological operation improved a level-set algorithm based on the Chan-Vese model to generate the mask of the expression subject. We extracted Harris feature points by removing redundant backgrounds based on the mask. We performed morphological etching on the mask to suppress the pseudo-feature points on the boundary-jagged pixels. We used violent matching and the RANSAC algorithm to screen out effective matching point pairs and calculate the homography matrix to realize matching and splicing. Compared with the Harris stitching algorithm under traditional image segmentation, the stitching accuracy of the improved algorithm significantly improved, and it showed strong robustness in different test scenarios.
-
-
表 1 4种算法RMSE值
Table 1 RMSE values of four algorithms
Group Ostu
-HarrisIT
-HarrisCV
-HarrisOurs 1 230.054 239.641 112.521 27.376 2 179.600 180.267 129.603 11.117 3 123.521 117.466 115.621 25.009 4 68.046 87.921 87.761 66.747 5 39.196 34.262 35.067 30.415 6 17.463 25.906 18.391 16.821 表 2 4种算法时间消耗
Table 2 Time consumption of the 4 algorithms
s Group Ostu-Harris IT-Harris CV-Harris Ours 1 3.661 2.896 10.337 10.503 2 3.145 2.899 10.365 10.178 3 3.025 2.779 10.639 10.638 4 3.002 3.02 10.437 10.381 5 3.269 3.051 10.635 11.016 6 3.064 2.956 10.521 10.594 Average 3.194 2.934 10.489 10.551 -
[1] 李禹桥. 基于旋翼无人机的风电叶片自主巡检系统研究[D]. 徐州: 中国矿业大学, 2021. LI Yuqiao. Research on Wind Turbine Blade Autonomous Inspection System based on Rotorcraft UAV[D]. Xuzhou: China University of Mining and Technology, 2021.
[2] 张明辉. 风力发电机故障检修与处理[J]. 科技创新导报, 2019, 16(10): 132-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201910075.htm ZHANG Minghui. Wind turbine fault repair and treatment[J]. Science and Technology Innovation Herald, 2019, 16(10): 132-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201910075.htm
[3] 王蔚, 刘丹. 我国风电市场: 前景一路看好[N]. 经济参考报, [2006-06-15]. WANG Wei, LIU Dan. China's wind power market: prospects all the way bright[N]. Economic Information Daily, [2006-06-15].
[4] 王浩, 闫号, 叶海瑞, 等. 基于无人机的光伏电站智能巡检[J]. 红外技术, 2022, 44(5): 537-542. http://hwjs.nvir.cn/article/id/9b100b0a-485a-47dd-bc1a-357a9bc0091f WANG Hao, YAN Hao, YE Hairui, et al. Intelligent patrol inspection of photovoltaic power station based on UAVs[J]. Infrared Technology, 2022, 44(5): 537-542. http://hwjs.nvir.cn/article/id/9b100b0a-485a-47dd-bc1a-357a9bc0091f
[5] 宫妍, 位冲冲. 图像拼接关键技术研究综述[J]. 电脑知识与技术, 2021, 17(30): 106-108. Doi: 10.14004/j.cnki.ckt.2021.2895. GONG Yan, WEI Chongchong. Review on key techniques of image stitching[J]. Computer Knowledge and Technology, 2021, 17(30): 106-108. Doi: 10.14004/j.cnki.ckt.2021.2895.
[6] CUI Z, QI W, LIU Y. A fast image template matching algo-rithm based on normalized cross correlation[J]. Journal of Physics Conference Series, 2020, 1693: 012163. DOI: 10.1088/1742-6596/1693/1/012163
[7] 马宝琰, 汤磊, 赵晶, 等. 风电叶片图像直线特征检测与拼接方法[J]. 哈尔滨理工大学学报, 2020, 25(5): 83-92. Doi: 10.15938/j.jhust.2020.05.012. MA Baoyan, TANG Lei, ZHAO Jing, et al. Straight line features detection and mosaic of wind power blades image[J]. Journal of Harbin University of Science and Technology, 2020, 25(5): 83-92. Doi: 10.15938/j.jhust.2020.05.012.
[8] 卢泉, 杨振华, 黄粒峰. 改进最佳缝合线的红外图像拼接方法[J]. 红外技术, 2022, 44(6): 580-586. http://hwjs.nvir.cn/article/id/ff102dc9-5b92-41f9-8a8f-813d8d5f0c8b LU Quan, YANG Zhenhua, HUANG Lifeng. Infrared image mosaic method for improving the best seam-line[J]. Infrared Technology, 2022, 44(6): 580-586. http://hwjs.nvir.cn/article/id/ff102dc9-5b92-41f9-8a8f-813d8d5f0c8b
[9] 傅子秋, 张晓龙, 余成, 等. 多场景下基于快速相机标定的柱面图像拼接方法[J]. 光电工程, 2020, 47(4): 74-86. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202004008.htm FU Ziqiu, ZHANG Xiaolong, YU Cheng, et al. Cylindrical image mosaic method based on fast camera calibration in multi-scene[J]. Opto-Electronic Engineering, 2020, 47(4): 74-86. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202004008.htm
[10] 何赟泽, 张帆, 刘昊, 等. 风机叶片无人机红外热图像拼接方法[J]. 电子测量与仪器学报, 2022, 36(7): 44-53. Doi: 10.13382/j.jemi.B2105058. HE Yunze, ZHANG Fan, LIU Hao, et al. Infrared image stitch method of wind turbine blade based on UAV[J]. Journal of Electronic Measurement and Instrument, 2022, 36(7): 44-53. Doi: 10.13382/j.jemi.B2105058.
[11] 方喜波. 光电侦察吊舱对海广域搜索方法[J]. 红外技术, 2021, 43(11): 1055-1060. http://hwjs.nvir.cn/article/id/9db773d6-e53b-4486-a8ca-f32834bc9f13 FANG Xibo. Searching method of the wide area of optical recon pod for sea targets[J]. Infrared Technology, 2021, 43(11): 1055-1060. http://hwjs.nvir.cn/article/id/9db773d6-e53b-4486-a8ca-f32834bc9f13
[12] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
[13] Ghaili A M, Mashohor S, Ramli A R. Vertical-edge-based car-license-plate detection method[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1): 26-38.
[14] 张见双, 张红民, 罗永涛, 等. 一种改进的Harris角点检测的图像配准方法[J]. 激光与红外, 2017, 47(2): 230-233. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201702021.htm ZHANG Jianshuang, ZHANG Hongmin, LUO Yongtao, et al. Image registration method based on improved Harris corner detection algorithm[J]. Laser & Infrared, 2017, 47(2): 230-233. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201702021.htm
-
期刊类型引用(3)
1. MENG Yinjie,WEI Zhengjun,YAN Ziling,WANG Jindong. Development of a bias power supply for Geiger mode avalanche photodiodes. Optoelectronics Letters. 2023(11): 659-665 . 必应学术
2. 陈良洲,鲁猛,陈有林. 基于TPS61175的BOOST升压及电荷泵倍压电路设计. 电子设计工程. 2021(11): 189-193 . 百度学术
3. 刘智恒. 光电二极管在物理中的应用. 家庭生活指南. 2018(09): 70 . 百度学术
其他类型引用(3)