全局特征提取的全卷积网络图像语义分割算法
Image Semantic Segmentation Based on Fully Convoluted Network with Global Feature Extraction
-
摘要: 以全卷积神经网络为基础设计图像语义分割算法框架,设计全局特征提取模块提升高维语义特征的提取能力,引入带孔卷积算子保留图像细节并提升分割结果的分辨率.通过搭建端到端的图像语义分割算法框架进行训练,在可见光数据集上对算法框架进行性能评估,结果表明,本文方法在可见光图像上取得良好的语义分割性能和精度.本文还在不借助红外数据标注训练的情况下对红外图像进行分割,结果证明本文方法在典型红外目标如行人、车辆的分割中也有较好的表现.