深度学习偏振图像融合研究现状

Review of Polarization Image Fusion Based on Deep Learning

  • 摘要: 偏振图像融合旨在通过光谱信息和偏振信息的结合改善图像整体质量,在图像增强、空间遥感、目标识别和军事国防等领域具有广泛应用。本文在回顾基于多尺度变换、稀疏表示和伪彩色等传统融合方法基础上,重点介绍基于深度学习的偏振图像融合方法研究现状。首先阐述基于卷积神经网络和生成对抗网络的偏振图像融合研究进展,然后给出在目标检测、语义分割、图像去雾和三维重建领域的相关应用,同时整理公开的高质量偏振图像数据集,最后对未来研究进行展望。

     

    Abstract: Polarization image fusion improves overall image quality by combining spectral and polarization information. It is used in different fields, such as image enhancement, spatial remote sensing, target identification and military defense. In this study, based on a review of traditional fusion methods using multi-scale transform, sparse representation, pseudo-coloration, etc. we focus on the current research status of polarization image fusion methods based on deep learning. First, the research progress of polarization image fusion based on convolutional neural networks and generative adversarial networks is presented. Next, related applications in target detection, semantic segmentation, image defogging, and three-dimensional reconstruction are described. Some publicly available high-quality polarization image datasets are collated. Finally, an outlook on future research is presented.

     

/

返回文章
返回