旋涂法制备石墨烯光阴极与测试分析

李世龙, 焦岗成

李世龙, 焦岗成. 旋涂法制备石墨烯光阴极与测试分析[J]. 红外技术, 2024, 46(12): 1459-1463.
引用本文: 李世龙, 焦岗成. 旋涂法制备石墨烯光阴极与测试分析[J]. 红外技术, 2024, 46(12): 1459-1463.
LI Shilong, JIAO Gangcheng. Prepared Test and Analysis of Graphene Photocathode by the Spin Coating Method[J]. Infrared Technology , 2024, 46(12): 1459-1463.
Citation: LI Shilong, JIAO Gangcheng. Prepared Test and Analysis of Graphene Photocathode by the Spin Coating Method[J]. Infrared Technology , 2024, 46(12): 1459-1463.

旋涂法制备石墨烯光阴极与测试分析

详细信息
    作者简介:

    李世龙(1985-),男,高级工程师,主要从事微光夜视技术研究。E-mail:shilonglee@163.com

  • 中图分类号: O47

Prepared Test and Analysis of Graphene Photocathode by the Spin Coating Method

  • 摘要:

    为研究石墨烯光阴极的特性,在Hummer方法的基础上引入超声和热水的辅助手段,制备得到石墨烯粉末,以此作为前驱体在阴极窗口玻璃基底上旋涂形成石墨烯薄膜,再使用电子束蒸镀工艺,以镍铬作为蒸镀材料制成环形电极,形成石墨烯光阴极组件。通过原子力显微镜、分光光度计、四探针、光荧光测试仪等技术手段对不同制备和处理工艺的石墨烯光阴极组件进行了研究分析。结果表明:增加分散液浓度和后续高温还原处理均使得石墨烯光阴极组件的吸收率增加;高温还原处理不仅可以提升石墨烯光阴极组件表面平整度,而且不会破坏石墨烯光阴极的晶体结构,还可以有效减少石墨烯光阴极的缺陷,对提高石墨烯光阴极发射特性具有一定促进作用。

    Abstract:

    In this study, the properties of graphene photocathodes were investigated using a modified Hummers' method enhanced by ultrasonic and hot water treatments to synthesize graphene powder. This powder, serving as a precursor, was used to form graphene films on the glass substrates of the photocathode window via spin coating. Subsequently, annular Ni/Cr electrodes were fabricated by electron-beam evaporation, resulting in the assembly of the graphene photocathode. Comprehensive analyses of photocathodes subjected to various preparation and processing techniques were conducted using atomic force microscopy, spectrophotometry, four-point probing, and photoluminescence testing. The results indicate that both the increased dispersion concentration and subsequent temperature reduction treatments significantly enhanced the absorption rate of the photocathode. Importantly, high-temperature reduction not only improves the surface smoothness of the photocathode assembly but also maintains the integrity of its crystal structure, reducing defects. This contributes positively to enhancing the emission characteristics of the graphene photocathode.

  • 图  1   石墨烯薄膜样品:(a)-(e) 5种典型结构的样品;(f) 前驱体的拉曼光谱测试图;(g) 前驱体的TEM图

    Figure  1.   The graphene thin films. (a)-(e): Five typical structures samples; (f): The Raman spectra of the precursors; (g): The TEM image of the precursors

    图  2   a、b、c样品AFM图像

    Figure  2.   The AFM images of sample a、b and c

    图  3   a、b、c样品透过率测试曲线

    Figure  3.   The transmission curve of sample a, b and c

    图  4   a、b、c样品光荧光测试曲线

    Figure  4.   The fluorescence intensity curves of sample a, b and c

    表  1   样品旋涂工艺及后处理方法

    Table  1   The spin coating technology and after-treatment method

    Sample
    number
    Concentration of dispersion/(g/ml) Coating speed/rpm After-treatment method
    a 0.4 6000 -
    b 0.8 6000 -
    c 0.4 6000 Heat treatment at 500℃ for 2 hours in hydrogen atmo-sphere
    d 0.4 6000 -
    e 0.4 6000 Heat treatment at 500℃ for 2 hours in hydrogen atmosphere
    下载: 导出CSV

    表  2   a, b, c样品表面电阻测试结果

    Table  2   The surface resistance of a, b and c sample Ω/□

    Sample number Test1 Test2 Test3 Test4 Test5 Average value
    a 1825 1783 1865 1653 1921 1809.4
    b 1504 1483 1395 1482 1655 1503.8
    c 954 875 935 1008 861 926.6
    下载: 导出CSV
  • [1]

    LEE C, WEI X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, V321(5887): 385-388. http://sbpmat.org.br/icam2009dir/submission/autor/arquivos/B510.pdf

    [2]

    HU J, RUAN X, CHEN Y P, Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study[J]. Nano Letters, 2009, 9(7): 2730-2735. DOI: 10.1021/nl901231s

    [3] 韩天亮, 唐利斌, 左文彬, 等. 石墨烯异质结及其光电器件的研究进展[J]. 红外技术, 2021, 43(12): 1141-1157. http://hwjs.nvir.cn/article/id/2b5c1c4c-eabf-48e0-9c16-63fb546f1ad1

    HAN Tianliang, TANG Libin, ZUO Wenbin, et al. Photoelectric properties and applications of graphene research progress of graphene heterojunctions and their optoelectronic devices[J]. Infrared Technology, 2021, 43(12): 1141-1157. http://hwjs.nvir.cn/article/id/2b5c1c4c-eabf-48e0-9c16-63fb546f1ad1

    [4] 韩钦, 高恺聪, 任思伟, 等. 石墨烯与典型光导型光电探测器读出电路的对比研究[J]. 红外技术, 2022, 44(2): 123-128. http://hwjs.nvir.cn/article/id/5adff991-e442-4aa2-925d-ba8ee1829af7

    HAN Qin, GAO Kaicong, REN Siwei, et al. Photoelectric properties and applications of graphene comparative study on readout circuit for graphene and typical photoconductors photodetectors[J]. Infrared Technology, 2022, 44(2): 123-128. http://hwjs.nvir.cn/article/id/5adff991-e442-4aa2-925d-ba8ee1829af7

    [5] 何峰, 徐波, 蓝镇立, 等. 基于石墨烯/硅微米孔阵列异质结的高性能近红外光探测器[J]. 红外技术, 2022, 44(11): 1236-1242. http://hwjs.nvir.cn/article/id/be1f2961-acd4-4320-b738-3ddd1c979a77

    HE Feng, XU Bo, LAN Zhengli, et al. High-Performance near-infrared photodetector based on a graphene/silicon microholes array heterojunction[J]. Infrared Technology, 2022, 44(11): 1236-1242. http://hwjs.nvir.cn/article/id/be1f2961-acd4-4320-b738-3ddd1c979a77

    [6] 王博, 唐利斌, 张玉平, 等. 黑硅光电探测材料与器件研究进展[J]. 红外技术, 2022, 44(5): 437-452. http://hwjs.nvir.cn/article/id/1b6534f3-1774-4e03-8a32-2797ce325b06

    WANG Bo, TANG Libin, ZHANG Yuping, et al. Research progress of black silicon photoelectric detection materials and devices[J]. Infrared Technology, 2022, 44(5): 437-452. http://hwjs.nvir.cn/article/id/1b6534f3-1774-4e03-8a32-2797ce325b06

    [7] 莫尊理, 朱小波, 赵国平, 等. 石墨烯的光电性能及其应用[J]. 硅酸盐通报, 2013, 32(9) : 1775-1779.

    MO Zunli, ZHU Xiaobo, ZHAO Guoping, et al. Photoelectric properties and applications of gaphene [J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1775-1779.

    [8] 唐利斌, 姬荣斌, 项金钟. 石墨烯基材料的能带调控技术研究进展[J]. 红外技术, 2015, 37(11): 897-905. http://hwjs.nvir.cn/article/id/hwjs201511001

    TANG Libin, JI Rongbin, XIANG Jinzhong. Progress in the tuning techniques of energy band for graphene based materials[J]. Infrared Technology, 2015, 37(11): 897-905. http://hwjs.nvir.cn/article/id/hwjs201511001

    [9] 姜小强, 刘智波, 田建国, 等. 石墨烯光学性质及其应用研究进展[J]. 物理学进展, 2017, 37(1): 22-36.

    JIANG Xiaoqiang, LIU Zhibo, TIAN Jianguo, et al. The optical properties of Graphene and its application [J]. Progress in Physics, 2017, 37(1): 22-36.

    [10] 郝秋来, 周立庆. 石墨烯合成及其光电特性[J]. 激光与红外, 2014(12): 1295-1299.

    HAO Qiulai, ZHOU Liqing. Synthesis and optical-electrical characteristics of grapheme[J]. Laser & Infrared, 2014(12): 1295-1299.

    [11] 赵建红, 宋立媛, 姬荣斌, 等. 石墨烯在光电探测领域的研究进展[J]. 红外技术, 2014, 36(8): 609-616. http://hwjs.nvir.cn/article/id/hwjs201408002

    ZHAO Jianhong, SONG Liyuan, JI Rongbin, et al. Research progress of graphene in the field of photoelectric detection[J]. Infrared Technology, 2014, 36(8): 609-616. http://hwjs.nvir.cn/article/id/hwjs201408002

    [12] 李绍娟, 甘胜, 沐浩然, 等. 石墨烯光电子器件的应用研究进展[J]. 新型炭材料, 2014, 29(5): 329-356.

    LI Shaojuan, GAN Sheng, MU Haoran, et al. Research progress in graphene use in photonic and optoelectronic devices[J]. New Carbon Materials, 2014, 29(5): 329-356.

    [13] 杨花, 曹阳, 贺军辉, 等. 石墨烯红外光电探测器研进展[J]. 激光与光电子学进展, 2015, 52(11): 23-35.

    YANG Hua, CAO Yang, HE Junhui, et al. Research progress in graphene-based infrared photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(11): 23-35.

    [14]

    Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. DOI: 10.1038/nnano.2012.60

    [15]

    Hummers William S, Offeman Richard E. Preparation of graphite oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.

    [16] 李含健, 刘洁, 任慧, 等. 微纳结构铝热剂薄膜的旋涂制备及其燃烧性能[J]. 兵工学报, 2017, 38(2): 267-272.

    LI Hanjian, LIU Jie, REN Hui, et al. Spin-coating preparation of micro-and nano-thermite films and their combustion performances[J]. Acta Armamentarii, 2017, 38(2): 267-272.

    [17] 郭晖. 积分光荧光测试在三代微光像增强器光阴极制作中的应用[J]. 应用光学, 2000, 21(6): 10-12.

    GUO Hui. The applcation of integrating fluorescence test manufacturing of photocathode In Gen. 3 low-light-level image intensifier[J]. Journal of Applied Optics, 2000, 21(6): 10-12.

  • 期刊类型引用(7)

    1. 彭方圆. 建筑预制梁下外墙板拼缝渗水状态红外图像识别方法. 粉煤灰综合利用. 2024(04): 111-116 . 百度学术
    2. 孙保燕,莫春华,薛伟,张玉涛,葛广昊. 红外成像和倾斜摄影三维融合在建筑检测中的应用. 红外技术. 2022(09): 991-998 . 本站查看
    3. 赵月,张运楚,孙绍涵,王超. 基于深度学习的螺纹钢表面缺陷检测. 计算机系统应用. 2021(07): 87-94 . 百度学术
    4. 杜慧,张蕾. 计算机辅助技术在优化塑料加工过程中的应用. 塑料科技. 2021(06): 110-113 . 百度学术
    5. 谭兴华,陈瑞斌,杨东,郭振华. 输电线路耐张线夹压接缺陷带电X射线无损检测方法. 分析仪器. 2021(05): 101-105 . 百度学术
    6. 杨忠华,付泽宇,付海霞. 泵塔区钢结构焊缝表面缺陷的超声红外热成像检测. 无损检测. 2021(11): 53-57 . 百度学术
    7. 谢抢来. 基于计算机辅助技术PP制件缺陷的无损检测. 工程塑料应用. 2020(12): 114-117 . 百度学术

    其他类型引用(3)

图(4)  /  表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  4
  • PDF下载量:  40
  • 被引次数: 10
出版历程
  • 收稿日期:  2023-10-18
  • 修回日期:  2024-01-18
  • 刊出日期:  2024-12-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日