LIU Zhaoqing, LI Li, DONG Bing, JIN Weiqi. Shack-Hartman Detector Real-time Wavefront Processor Based on FPGA[J]. Infrared Technology , 2021, 43(8): 717-722.
Citation: LIU Zhaoqing, LI Li, DONG Bing, JIN Weiqi. Shack-Hartman Detector Real-time Wavefront Processor Based on FPGA[J]. Infrared Technology , 2021, 43(8): 717-722.

Shack-Hartman Detector Real-time Wavefront Processor Based on FPGA

More Information
  • Received Date: December 11, 2019
  • Revised Date: April 25, 2021
  • The Shack-Hartman wavefront sensor is the most widely used real-time wavefront detector in adaptive optics systems. In this study, a Shack-Hartmann sensor with high resolution, high frame rate, and a large-scale sub-aperture number is proposed. Based on the requirements of wavefront processing calculations and real-time performance, a field-programmable gate array (FPGA) is also proposed. The real-time wavefront processor structure and wavefront slope calculation method are investigated. The system employed the core processing module to reuse the method to calculate the centroid of the spot in the sub-aperture and transmitted the processed centroid data to the PC in real time through USB 3.0. The processor was designed with a XILINX Kintex7-325T FPGA processing chip. The results demonstrate that the algorithm can perform low-latency, real-time operations on 1020×1020 images and 56×56 sub-aperture Hartmann sensors at 560 frames per second. The spot centroid calculation increased the wavefront processing speed of the system and the control speed of the entire adaptive optics system.
  • [1]
    周璐春, 王春鸿, 李梅, 等. 基于FPGA技术的波前斜率处理方法[J]. 光电工程, 2002, 29(3): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200203007.htm

    ZHOU Luchun, WANG Chunhong, LI Mei, et al. A wavefront slope processing method based on FPGA technique[J]. Opto-Electronic Engineering, 2002, 29(3): 28-31 https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200203007.htm
    [2]
    樊志华, 王春鸿, 姜文汉. 基于累加器的哈特曼-夏克波前斜率处理器[J]. 光学精密工程, 2011, 19(3): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201103002.htm

    FAN Zhihua, WANG Chunhong, JIANG Wenhan. Accumulator -based wavefront slope processor for Shack-Hartmann sensors[J]. Optics and Precision Engineering, 2011, 19(3): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201103002.htm
    [3]
    陈善球, 刘超, 许冰, 等. 通用自适应光学波前实时处理机的设计[J]. 中国激光, 2015, 42(12): 1212001 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201512036.htm

    CHEN Shanqiu, LIU Chao, XU Bing, et al. Design of generic adaptive optics wave-front real-time processor[J]. Chinese Journal of Lasers, 2015, 42(12): 1212001 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201512036.htm
    [4]
    李大禹. 基于多GPU的液晶自适应光学波前处理器[J]. 液晶与显示, 2016, 31(5): 491-496. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201605011.htm

    LI Dayu. Liquid crystal adaptive optics wavefront processor based on multi-GPU[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(5): 491-496. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201605011.htm
    [5]
    贾建禄, 王建立, 赵金宇. 基于FPGA的自适应光学系统波前处理机[J]. 光学精密工程, 2011, 19(8): 1716-1722. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201108003.htm

    JIA Jianlu, WANG Jianli, ZHAO Jinyu, et al. Adaptive optical wave-front processor based on FPGA[J]. Optics and Precision Engineering, 2011, 19(8): 1716-1722. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201108003.htm
    [6]
    Mauch S, Reger J. Real-time spot detection and ordering for a Shack-Hartmann wavefront sensor with a low-cost FPGA[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(10): 2379-2386. DOI: 10.1109/TIM.2014.2310616
    [7]
    王建立. 349单元自适应光学波前处理器[J]. 光学精密工程, 2018, 26(5): 1007-1013. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201805001.htm

    WANG Jianli. Three hundred and forty-nine unit adaptive optical wave front processor[J]. Optics and Precision Engineering, 2018, 26(5): 1007-1013. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201805001.htm
    [8]
    Avinash Surendran, Mahesh P Burse, Ramaprakash A N, et al. Scalable platform for adaptive optics real-time control (SPARC) part 2: field programmable gate array (FPGA) implementation and performance[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4(3): 039002. DOI: 10.1117/1.JATIS.4.3.039002.full
  • Related Articles

    [1]LIU Lei, QIAN Yunsheng. A Low Illumination Image Acquisition and Processing System Based on FPGA[J]. Infrared Technology , 2022, 44(5): 462-468.
    [2]SUN Shaowei, YANG Yuetao, YANG Bingwei, WAN Anjun, ZHONG Hailin. Research and Implementation of Infrared Lens Auto-focus Technology Based on Field Programmable Gate Array[J]. Infrared Technology , 2021, 43(5): 464-472.
    [3]CHI Linhui, QIAN Yunsheng, JI Yuhao. Verification Protocol for Improving Communication Stability Between FPGAs[J]. Infrared Technology , 2020, 42(11): 1022-1027.
    [4]High-speed Spectrum Inversion System Based on FPGA[J]. Infrared Technology , 2019, 41(6): 535-539.
    [5]LIU Yuan, LI Qing, LIANG Yanju. Implementation of Infrared Target Detection System Based on FPGA[J]. Infrared Technology , 2019, 41(6): 521-526.
    [6]LIU Jiangping, XUE Heru. High-speed Spectrum Acquisition and Processing System Based on FPGA[J]. Infrared Technology , 2018, 40(11): 1042-1046.
    [7]ZHANG Chenghong, LI Fanming, YANG Long. Real Time Infrared Video Capture and Display System Based on FPGA[J]. Infrared Technology , 2017, 39(2): 143-146.
    [8]LIU Rui-qiang, WANG Yong-xin. Based on FPGA Real-time Spectrum Obtained of Static Fourier Spectrometer[J]. Infrared Technology , 2011, 33(8): 465-469. DOI: 10.3969/j.issn.1001-8891.2011.08.008
    [9]GONG Man-man, CHEN Qian, GU Guo-hua, SUI Xiu-bao. FPGA-Based Realization of Second-Order Newton Interpolation of Infrared Image[J]. Infrared Technology , 2010, 32(12): 723-726. DOI: 10.3969/j.issn.1001-8891.2010.12.009
    [10]Improved Canny Edge Detection Algorithm and Implementation in FPGA[J]. Infrared Technology , 2010, 32(2): 93-96. DOI: 10.3969/j.issn.1001-8891.2010.02.008
  • Cited by

    Periodical cited type(1)

    1. 朱强,周维虎,陈晓梅,石俊凯,李冠楠. 高速实时近红外弱信号检测系统. 光学精密工程. 2022(24): 3116-3127 .

    Other cited types(2)

Catalog

    Article views (242) PDF downloads (60) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return