Citation: | ZHANG Yijun. Progress in Research on Semiconductor Photocathodes[J]. Infrared Technology , 2022, 44(8): 778-791. |
[1] |
HERTZ H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung[J]. Annalen der Physik, 1887, 267: 983-1000. DOI: 10.1002/andp.18872670827
|
[2] |
EINSTEIN A. On a heuristic viewpoint concerning the production and transformation of light[J]. Annalen der Physik, 1905, 17: 132-148.
|
[3] |
SPICER W E. Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds[J]. Physical Review, 1958, 112(1): 114-122. DOI: 10.1103/PhysRev.112.114
|
[4] |
SOMMER A H. Photoemissive Materials: Preparation, Properties and Uses[M]. New York: John Wiley & Sons, 1968: 1-4.
|
[5] |
XIANG R, TEICHERT J. Photocathodes for high brightness photo injectors[J]. Physics Procedia, 2015, 77: 58-65. DOI: 10.1016/j.phpro.2015.11.010
|
[6] |
LORUSSO A. Overview and development of metallic photocathodes prepared by laser ablation[J]. Applied Physics A, 2013, 110: 869-875. DOI: 10.1007/s00339-012-7168-z
|
[7] |
SRINIVASAN-RAO T, FISCHER J, TSANG T. Photoemission studies on metals using picosecond ultraviolet laser pulses[J]. Journal of Applied Physics, 1991, 69(5): 3291-3296. DOI: 10.1063/1.348550
|
[8] |
XIE H. Overview of the semiconductor photocathode research in China[J]. Micromachines, 2021, 12(11): 1376. DOI: 10.3390/mi12111376
|
[9] |
唐光华, 戴丽英, 钟伟俊, 等. 紫外光电阴极研究进展[J]. 真空电子技术, 2011(6): 5-11. DOI: 10.3969/j.issn.1002-8935.2011.06.002
TANG Guanghua, DAI Liying, ZHONG Weijun, et al. Development of ultraviolet photocathodes research[J]. Vacuum Electronics, 2011(6): 5-11. DOI: 10.3969/j.issn.1002-8935.2011.06.002
|
[10] |
CHANLEK N, HERBERT J D, JONES R M, et al. The degradation of quantum efficiency in negative electron affinity GaAs photocathodes under gas exposure[J]. Journal of Physics D: Applied Physics, 2014, 47(5): 055110. DOI: 10.1088/0022-3727/47/5/055110
|
[11] |
MARTINELLI R U, FISHER D G. The application of semiconductors with negative electron affinity surfaces to electron emission devices[J]. Proceedings of the IEEE, 1974, 62(10): 1339-1360. DOI: 10.1109/PROC.1974.9626
|
[12] |
Hamamatsu Photonics KK. High-speed gated I. I. unit selection guide [DB/OL]. http://www.hamamatsu.com.cn/UserFiles/DownFile/Related/GateII_TII0006E.pdf, 2014.
|
[13] |
REN Bin, GUO Hui, SHI Feng, et al. A theoretical and experimental evaluation of Ⅲ-nitride solar-blind UV photocathode[J]. Chinese Physics B, 2017, 26(8): 088504. DOI: 10.1088/1674-1056/26/8/088504
|
[14] |
唐家业, 方盛江, 颜士飞, 等. 日盲紫外真空探测器件和组件技术研究[J]. 真空电子技术, 2022(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ202202006.htm
TANG Jiaye, FANG Shengjiang, YAN Shifei, et al. Technique research on solar-blind ultraviolet vacuum detector and assembly[J]. Vacuum Electronics, 2022(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ202202006.htm
|
[15] |
SUYAMA M, NAKAMURA K. Recent progress of photocathodes for PMTs[C]//International Workshop on New Photon Detectors, 2010: PD09 (DOI: 10.22323/1.090.0013).
|
[16] |
田进寿. 条纹及分幅相机技术发展概述[J]. 强激光与粒子束, 2020, 32: 112003. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202011003.htm
TIAN Jinshou. Introduction to development of streak and framing cameras[J]. High Power Laser and Particle Beams, 2020, 32: 112003. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202011003.htm
|
[17] |
程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
|
[18] |
CHRZANOWSKI K. Review of night vision technology[J]. Opto-Electronics Review, 2015, 21(2): 149-164.
|
[19] |
田金生. 微光像传感器技术的最新进展[J]. 红外技术, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001
TIAN Jinsheng. New development of low light level imaging sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001
|
[20] |
TRIVENI R, DOWELL D H. An Engineering Guide to Photoinjectors[M]. North Charleston: Create Space Independent Publishing Platform, 2013.
|
[21] |
RUSSELL S J. Overview of high-brightness, high-average-current photoinjectors for FELs[J]. Nuclear Instruments and Methods in Physics Research Section A, 2003, 507: 304-309. DOI: 10.1016/S0168-9002(03)00934-3
|
[22] |
XIANG R, ARNOLD A, BUETTIG H, et al. Cs2Te normal conducting photocathodes in the superconducting rf gun[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13(4): 043501. DOI: 10.1103/PhysRevSTAB.13.043501
|
[23] |
KARKARE S, BOULET L, CULTRERA L, et al. Ultrabright and ultrafast Ⅲ-Ⅴ semiconductor photocathodes[J]. Physical Review Letters, 2014, 112(9): 097601. DOI: 10.1103/PhysRevLett.112.097601
|
[24] |
SINCLAIR C K, ADDERLEY P A, DUNHAM B M, et al. Development of a high average current polarized electron source with long cathode operational lifetime[J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10(2): 023501. DOI: 10.1103/PhysRevSTAB.10.023501
|
[25] |
CULTRERA L, MAXSON J, BAZAROV I, et al. Photocathode behavior during high current running in the Cornell energy recovery linac photoinjector[J]. Physical Review Special Topics-Accelerators and Beams, 2011, 14(12): 120101. DOI: 10.1103/PhysRevSTAB.14.120101
|
[26] |
MUSUMECI P, NAVARRO J G, ROSENZWEIG J B, et al. Advances in bright electron sources[J]. Nuclear Instruments and Methods in Physics Research Section A, 2018, 907: 209-220. DOI: 10.1016/j.nima.2018.03.019
|
[27] |
CHANG T H P, MANKOS M, LEE K Y, et al. Multiple electron-beam lithography[J]. Microelectronic Engineering, 2001, 57: 117-135.
|
[28] |
MACHUCA F, SUN Y, LIU Z, et al. Prospect for high brightness Ⅲ–nitride electron emitter[J]. Journal of Vacuum Science & Technology B, 2000, 18(6): 3042-3046.
|
[29] |
MORISHITA H, OHSHIMA T, KUWAHARA M, et al. Resolution improvement of low-voltage scanning electron microscope by bright and monochromatic electron gun using negative electron affinity photocathode[J]. Journal of Applied Physics, 2020, 127(16): 164902. DOI: 10.1063/5.0005714
|
[30] |
KUWAHARA M, TAKEDA Y, SAITOH K, et al. Development of spin-polarized transmission electron microscope[C]//Journal of Physics: Conference Series, 2011, 298: 012016.
|
[31] |
DI BONA A, SABARY F, VALERI S, et al. Auger and x-ray photoemission spectroscopy study on Cs2Te photocathodes[J]. Journal of Applied Physics, 1996, 80(5): 3024-3030. DOI: 10.1063/1.363161
|
[32] |
SUBERLUCQ G. Technological challenges for high brightness photo-injectors[C]//Proceedings of EPAC, 2004: 64-68.
|
[33] |
GAOWEI M, SINSHEIMER J, STROM D, et al. Codeposition of ultrasmooth and high quantum efficiency cesium telluride photocathodes[J]. Physical Review Accelerators and Beams, 2019, 22(7): 073401. DOI: 10.1103/PhysRevAccelBeams.22.073401
|
[34] |
BISERO D, VAN OERLE B M, ERNST G J, et al. High efficiency photoemission from Cs-K-Te[J]. Applied Physics Letters, 1997, 70(12): 1491-1493. DOI: 10.1063/1.118362
|
[35] |
VERSCHUUR J W J, VAN OERLE B M, ERNST G J, et al. Aspects of accelerator-based photoemission[J]. Nuclear Instruments and Methods in Physics Research Section B, 1998, 139: 541-545. DOI: 10.1016/S0168-583X(97)00953-1
|
[36] |
李晓峰, 赵学峰, 褚祝军, 等. Rb2Te与Cs2Te日盲紫外阴极比较研究[J]. 真空科学与技术学报, 2014, 34(8): 808-813. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201408007.htm
LI Xiaofeng, ZHAO Xuefeng, CHU Zhujun, et al. Comparison study of Rb2Te and Cs2Te solar blind ultraviolet cathodes[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(8): 808-813. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201408007.htm
|
[37] |
李晓峰, 赵学峰, 冯辉, 等. 一种用于紫外像增强器的碲钾铯光电阴极: 中国: 201410107207.9 [P]. 2017.
LI Xiaofeng, ZHAO Xuefeng, Feng Hui, et al. Tellurium potassium caesium photocathode used for ultraviolet image intensifier: China: 201410107207.9 [P]. 2017.
|
[38] |
李晓峰, 赵学峰, 陈其钧, 等. K2Te(Cs)日盲紫外光电阴极研究[J]. 光子学报, 2014, 43(6): 0625003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201406026.htm
LI Xiaofeng, ZHAO Xuefeng, CHEN Qijun, et al. Study on K2Te(Cs) solar blind ultraviolet cathode[J]. Acta Photonica Sinica, 2014, 43(6): 0625003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201406026.htm
|
[39] |
李晓峰, 赵学峰, 张昆林, 等. Rb2Te(Cs)日盲紫外光电阴极研究[J]. 红外技术, 2013, 35(9): 581-586. http://hwjs.nvir.cn/article/id/hwjs201309011
LI Xiaofeng, ZHAO Xuefeng, ZHANG Kunlin, et al. Study on Rb2Te(Cs) solar blind ultraviolet cathode[J]. Infrared Technology, 2013, 35(9): 581-586. http://hwjs.nvir.cn/article/id/hwjs201309011
|
[40] |
DOWELL D H, BETHEL S Z, FRIDDELL K D. Results from the average power laser experiment photocathode injector test[J]. Nuclear Instruments and Methods in Physics Research Section A, 1995, 356: 167-176. DOI: 10.1016/0168-9002(94)01327-6
|
[41] |
谢华木, 王尔东. 作为加速器电子源的高量子效率K2CsSb光阴极制备工艺研究[J]. 真空, 2017, 54(1): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201701016.htm
XIE Huamu, WANG Erdong. Research on fabrication recipe of high quantum efficiency K2CsSb photocathode[J]. Vacuum, 2017, 54(1): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201701016.htm
|
[42] |
LI X D, JIANG Z G, GU Q, et al. Preliminary systematic study of the temperature effect on the K-Cs-Sb photocathode performance based on the K and Cs co-evaporation[J]. Chinese Physics Letters, 2020, 37(1): 012901. DOI: 10.1088/0256-307X/37/1/012901
|
[43] |
DING Z, GAOWEI M, SINSHEIMER J, et al. In-situ synchrotron x-ray characterization of K2CsSb photocathode grown by ternary co-evaporation[J]. Journal of Applied Physics, 2017, 121: 055305. DOI: 10.1063/1.4975113
|
[44] |
FENG J, KARKARE S, NASIATKA J, et al. Near atomically smooth alkali antimonide photocathode thin films[J]. Journal of Applied Physics, 2017, 121: 044904. DOI: 10.1063/1.4974363
|
[45] |
SUN J, JIN M, WANG X, et al. Enhanced photoemission capability of bialkali photocathodes for 20-inch photomultiplier tubes[J]. Nuclear Instruments and Methods in Physics Research Section A, 2020, 971: 164021. DOI: 10.1016/j.nima.2020.164021
|
[46] |
CULTRERA L, KARKARE S, LILLARD B, et al. Growth and characterization of rugged sodium potassium antimonide photocathodes for high brilliance photoinjector[J]. Applied Physics Letters, 2013, 103: 103504. DOI: 10.1063/1.4820132
|
[47] |
CULTRERA L, GULLIFORD C, BARTNIK A, et al. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light[J]. Applied Physics Letters, 2016, 108: 134105. DOI: 10.1063/1.4945091
|
[48] |
李朝木, 李谷川, 贾文. 多碱光电阴极[J]. 真空与低温, 1992, 11(1): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW199201003.htm
LI Chaomu, LI Guchuan, JIA Wen. Multialkali photocathode[J]. Vacuum and Cryogenics, 1992, 11(1): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW199201003.htm
|
[49] |
曾桂林, 周立伟, 李晓峰. 多碱光阴极玻璃基底表面处理研究[J]. 激光与红外, 2005, 35(7): 508-511. DOI: 10.3969/j.issn.1001-5078.2005.07.015
ZENG Guilin, ZHOU Liwei, LI Xiaofeng. Research on surface treatment of multalkali photocathode glass substrate[J]. Lase & Infrared, 2005, 35(7): 508-511. DOI: 10.3969/j.issn.1001-5078.2005.07.015
|
[50] |
李晓峰, 陆胜林, 杨文波, 等. Na2KSb膜层组份均匀性对多碱阴极灵敏度的影响研究[J]. 光子学报, 2012, 41(10): 1171-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201210007.htm
LI Xaofeng, LU Shenglin, YANG Wenbo, et al. Component uniformity study on Na2KSb film of multi-alkali photocathode[J]. Acta Photonica Sinica, 2012, 41(10): 1171-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201210007.htm
|
[51] |
赵恒, 常乐, 李廷涛, 等. 多碱光电阴极的Cs-O激活技术研究[J]. 红外技术, 2018, 40(7): 695-700. http://hwjs.nvir.cn/article/id/hwjs201807013
ZHAO Heng, CHANG Le, LI Tingtao, et al. Study on Cs-O activation technology of multi-alkali photocathode[J]. Infrared Technology, 2018, 40(7): 695-700. http://hwjs.nvir.cn/article/id/hwjs201807013
|
[52] |
常本康. 多碱阴极的结构分析与研究[J]. 应用光学, 1984(4): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX198404001.htm
CHANG Benkang. Study and analysis of structure on multialkali photocathode[J]. Journal of Applied Optics, 1984(4): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX198404001.htm
|
[53] |
杜晓晴, 常本康, 邹继军. Cs、O激活方式对GaAs光电阴极的影响[J]. 真空科学与技术学报, 2006, 26(1): 1-7. DOI: 10.3969/j.issn.1672-7126.2006.01.001
DU Xiaoqing, CHANG Benkang, ZOU Jijun. Influence of Cs, O activation modes on GaAs photocathode[J]. Chinese Journal of Vacuum Science and Technology, 2006, 26(1): 1-7. DOI: 10.3969/j.issn.1672-7126.2006.01.001
|
[54] |
ZHANG Yijun, ZHANG Kaimin, LI Shan, et al. Effect of excessive Cs and O on activation of GaAs (100) surface: from experiment to theory[J]. Journal of Applied Physics, 2020, 128: 173103. DOI: 10.1063/5.0028042
|
[55] |
LIU Z, SUN Y, PETERSON S, et al. Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes[J]. Applied Physics Letters, 2008, 92: 241107. DOI: 10.1063/1.2945276
|
[56] |
PASTUSZKA S, TEREKHOV A S, WOLF A. 'Stable to unstable' transition in the (Cs, O) activation layer on GaAs (100) surfaces with negative electron affinity in extremely high vacuum[J]. Applied Surface Science, 1996, 99(4): 361-365. DOI: 10.1016/0169-4332(96)00106-7
|
[57] |
CHANLEK N, HERBERT J D, JONES R M, et al. High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3[J]. Journal of Physics D: Applied Physics, 2015, 48(37): 375102. DOI: 10.1088/0022-3727/48/37/375102
|
[58] |
LI Shan, ZHANG Yijun, ZHANG Kaimin, et al. Comparison of activation behavior of Cs-O and Cs-NF3-adsorbed GaAs (1 0 0)-β2 (2× 4) surface: From DFT simulation to experiment[J]. Journal of Colloid and Interface Science, 2022, 613: 117-125. DOI: 10.1016/j.jcis.2022.01.013
|
[59] |
SUN Y, KIRBY R E, MARUYAMA T, et al. The surface activation layer of GaAs negative electron affinity photocathode activated by Cs, Li, and NF3[J]. Applied Physics Letters, 2009, 95: 174109. DOI: 10.1063/1.3257730
|
[60] |
MULHOLLAN G A, BIERMAN J C. Enhanced chemical immunity for negative electron affinity GaAs photoemitters[J]. Journal of Vacuum Science & Technology A, 2008, 26(5): 1195-1197.
|
[61] |
KURICHIYANIL N, ENDERS J, FRITZSCHE Y, et al. A test system for optimizing quantum efficiency and dark lifetime of GaAs photocathodes[J]. Journal of Instrumentation, 2019, 14: P08025. DOI: 10.1088/1748-0221/14/08/P08025
|
[62] |
BAE J K, CULTRERA L, DIGIACOMO P, et al. Rugged spin-polarized electron sources based on negative electron affinity GaAs photocathode with robust Cs2Te coating[J]. Applied Physics Letters, 2018, 112: 154101. DOI: 10.1063/1.5026701
|
[63] |
CULTRERA L, GALDI A, BAE J K, et al. Long lifetime polarized electron beam production from negative electron affinity GaAs activated with Sb-Cs-O: trade-offs between efficiency, spin polarization, and lifetime[J]. Physical Review Accelerators and Beams, 2020, 23(2): 023401. DOI: 10.1103/PhysRevAccelBeams.23.023401
|
[64] |
BAE J K, GALDI A, CULTRERA L, et al. Improved lifetime of a high spin polarization superlattice photocathode[J]. Journal of Applied Physics, 2020, 127: 124901. DOI: 10.1063/1.5139674
|
[65] |
BISWAS J, WANG E, GAOWEI M, et al. High quantum efficiency GaAs photocathodes activated with Cs, O2, and Te[J]. AIP Advances, 2021, 11: 025321. DOI: 10.1063/5.0026839
|
[66] |
李晓峰, 李莉, 杨文波, 等. 多碱光电阴极膜厚对阴极灵敏度的影响研究[J]. 红外技术, 2012, 34(7): 422-426. DOI: 10.3969/j.issn.1001-8891.2012.07.009
LI Xiaofeng, LI Li, YAN Wenbo, et al. Study on sensitivity of different thickness of multi-alkali photocathode[J]. Infrared Technology, 2012, 34(7): 422-426. DOI: 10.3969/j.issn.1001-8891.2012.07.009
|
[67] |
NÜTZEL G, LAVOUTE P. Semi-transparent photocathode with improved absorption rate: United States: 9960004B2[P]. 2018.
|
[68] |
李晓峰, 赵恒, 张彦云, 等. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
|
[69] |
YAMAGUCHI H, LIU F, DEFAZIO J, et al. Active bialkali photo-cathodes on free-standing graphene substrates[J]. npj 2D Materials and Applications, 2017(1): 12.
|
[70] |
YAMAGUCHI H, LIU F, DEFAZIO J, et al. Quantum efficiency enhancement of bialkali photocathodes by an atomically thin layer on substrates[J]. Physica Status Solidi A, 2019, 216: 1900501. DOI: 10.1002/pssa.201900501
|
[71] |
GALDI A, BALAJKA J, DEBENEDETTI W J I, et al. Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates[J]. Applied Physics Letters, 2021, 118: 244101. DOI: 10.1063/5.0053186
|
[72] |
PARZYCK C T, GALDI A, NANGOI J K, et al. Single-crystal alkali antimonide photocathodes: high efficiency in the ultrathin limit[J]. Physical Review Letters, 2022, 128(11): 114801. DOI: 10.1103/PhysRevLett.128.114801
|
[1] | XIAO Nachuan, SUN Tuo, HU Liyun, ZHAO Yongquan, WANG Shuangbao, XU Zhimou, ZHANG Xueming. Design of Compact Athermalized Long-Wave Infrared Lens Set with Large Field of View[J]. Infrared Technology , 2024, 46(1): 20-26. |
[2] | FENG Lijun, LI Xunniu, CHEN Jie, ZHOU Lingling, DONG Jiangtao, SUN Aiping, BAO Jianan. Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors[J]. Infrared Technology , 2022, 44(10): 1066-1072. |
[3] | CHEN Xiao. Athermalization of Infrared Zoom Optical System with Large Relative Aperture[J]. Infrared Technology , 2021, 43(12): 1183-1187. |
[4] | HE Xiangqing, LIAO Xiaojun, DUAN Yuan, ZHANG Haoye. Common Aperture and Athermalization Design of Compact Laser/Infrared Optical System[J]. Infrared Technology , 2020, 42(5): 461-467. |
[5] | YANG Liangliang, SHEN Fahua, LIU Chenglin, TONG Qiaoying. Athermal Design of Infrared Dual-band Optical System with Double-layer Diffractive Optical Elements[J]. Infrared Technology , 2019, 41(8): 699-704. |
[6] | Design of Long-wavelength Infrared Athermalization Lens for Large-array Detector[J]. Infrared Technology , 2018, 40(11): 1061-1064. |
[7] | JIANG Bo, WU Yue-hao, DAI Shi-xun, NIE Qiu-hua, MU Rui, ZHANG Qin-yuan. Design of a Compact Dual-band Athermalized Infrared System[J]. Infrared Technology , 2015, (12): 999-1004. |
[8] | LV Yin-huan, LEI Cun-dong, CUI Wei-xin. Design and Realization of Athermalizing Optical System for Long-wave Infrared Horizon Sensor[J]. Infrared Technology , 2011, 33(11): 651-654,658. DOI: 10.3969/j.issn.1001-8891.2011.11.007 |
[9] | CUI Li, ZHAO Xin-liang, LITong-hai, TIAN Hai-xia, WU Hai-qing. Athermalization of Uncooled Infrared Optical System Without Focusing Mechanism[J]. Infrared Technology , 2010, 32(4): 187-190. DOI: 10.3969/j.issn.1001-8891.2010.04.001 |
[10] | BAI Yun, YANG Jian-feng, MA Xiao-long, XUE Bin, RUAN Ping, TIAN Hai-xia, WANG Hong-wei, LIANG Shi-tong, LI Xiang-juan. Athermalization of Long-wavelength Infrared Optical System[J]. Infrared Technology , 2008, 30(10): 583-585. DOI: 10.3969/j.issn.1001-8891.2008.10.007 |