Citation: | QIN Gang, KONG Jincheng, REN Yang, CHEN Weiye, YANG Jin, QIN Qiang, ZHAO Jun. Optimized Design of nBn LWIR HgCdTe Devices[J]. Infrared Technology , 2024, 46(7): 815-820. |
In this study, the effect of the type-Ⅰ band on the performance of HgCdTe-based nBn devices was analyzed theoretically. A theoretical calculation of the relationship between the composition and doping concentration of the barrier layer and the band offset was obtained, and the relationship between the doping concentration of the absorption layer and the dark current of nBn LWIR HgCdTe devices was determined. Both the doping concentration and composition gradient between the barrier and absorption layers of nBn LWIR HgCdTe devices were optimized. A two-dimensional device simulation model was established, and the band structure of nBn LWIR HgCdTe devices was calculated. The results show that optimization of the device structure parameters effectively reduced the turn-on voltage required for device operation, while almost no depletion region was formed in the absorption layer, which effectively inhibited the SRH generation-recombination current and tunneling current. In this study, we also calculated the temperature-dependent dark current of optimized nBn LWIR HgCdTe devices; the operating temperature of the device was above 110 K. This study establishes a theoretical basis for developing high-performance barrier-structured LWIR-HgCdTe devices.
[1] |
褚君浩. 窄禁带半导体物理学[M]. 北京: 科学出版社, 2005.
CHU Junhao. Narrow-gap Semiconductor Physics[M]. Beijing: Science Press, 2005.
|
[2] |
杨健荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.
YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Defense Industry Press, 2012.
|
[3] |
史衍丽. 第三代红外探测器的发展与选择[J]. 红外技术, 2013, 35(1): 1-8. http://hwjs.nvir.cn/cn/article/id/hwjs201301003
SHI Yanli. Choice and development of the third-generation infrared detectors[J]. Infrared Technology, 2013, 35(1): 1-8. http://hwjs.nvir.cn/cn/article/id/hwjs201301003
|
[4] |
Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009, 105(9): 091101-1. DOI: 10.1063/1.3099572
|
[5] |
Rogalski A. New material systems for third generation infrared detectors[C]//SPIE, 2009, 7388: 73880J-1.
|
[6] |
Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 151109(89): 1-3.
|
[7] |
Rodriguez J B, Plis E, Bishop G, et al. nBn structure based on InAs/GaSb type-Ⅱ strained layer superlattices[J]. Applied Physics Letters, 2007, 043514(91): 1-2.
|
[8] |
Itsuno A M, Phillips J D, Selicu S. Design and modeling of HgCdTe nBn detectors[J]. Journal of Electronic Materials, 2011, 40(8): 1624-1629. DOI: 10.1007/s11664-011-1614-0
|
[9] |
Itsuno A M, Phillips J D, Velicu S. Mid-wave infrared HgCdTe nBn photodetector[J]. Applied Physics Letters, 2012, 161102(100): 2-4.
|
[10] |
Itsuno A M, Phillips J D, Velicu S. Design of an auger-suppressed unipolar HgCdTe NBvN photodetector[J]. Journal of Electronic Materials, 2012, 41(10): 2886-2993. DOI: 10.1007/s11664-012-1992-y
|
[11] |
Kopytko M, Wrobel J, Jozwikowski K, et al. Engineering the bandgap of unipolar of HgCdTe-based nBn infrared photodetectors[J]. Journal of Electronic Materials, 2015, 44(1): 158-166. DOI: 10.1007/s11664-014-3511-9
|
[12] |
Martyniuk P, Gawron W, Rogalski A. Theoretical modeling of HOT HgCdTe barrier detectors for the mid-wave infrared range[J]. Journal of Electronic Materials, 2013, 42(11): 3309-3319. DOI: 10.1007/s11664-013-2737-2
|
[13] |
N Akhavan D, Umana-Membreno G A, Jolley G, et al. A method of removing the valence band offset discontinuity in HgCdTe-based nBn detectors[J]. Applied Physics Letters, 2014, 121110(105): 1-4.
|
[14] |
Akhavan N D, Umana-Membreno G A, Renjie Gu, et al. Superlattice barrier HgCdTe nBn infrared photodetectors: validation of the effective mass approximation[J]. IEEE Transactions on Electron Devices, 2016, 63(12): 1-8. DOI: 10.1109/TED.2016.2623269
|
[15] |
Rogalski A, Kopytko M, Jóźwikowski K, et al. Influence of radiative recombination on performance of p-i-n HOT long wavelength infrared HgCdTe photodiodes[C]//SPIE, 2018, 10624: 106240Y-1.
|
[16] |
Rogalski A, Kopytko M, Martyniuk P. Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes[J]. Applied Optics, 2018, 57(18): D11-D19. DOI: 10.1364/AO.57.000D11
|
[17] |
Kinch M A. State-of-the-Art Infrared Detector Technology[M]. Bellingham: SPIE, 2014.
|
[18] |
Lee D, Dreiske P, Ellsworth J, et al. Law 19: The ultimate photodiode performance metric[C]//SPIE, 2020, 11407: 114070X-1.
|
[19] |
Tennant W E, Lee D, Zandian M, et al. MBE HgCdTe technology: a very general solution to IR detection, described by ''Rule 07", a very convenient heuristic[J]. Journal of Electronic Materials, 2008, 37(9): 1406-1410. DOI: 10.1007/s11664-008-0426-3
|
[20] |
Tennant W E. "Rule 07" Revisited: still a good heuristic predictor of p/n HgCdTe photodiode performance?[J]. Journal of Electronic Materials, 2010, 39(7): 1030-1035. DOI: 10.1007/s11664-010-1084-9
|
[21] |
Elliott C T, Gordon N T, White A M. Towards background-limited, room-temperature, infrared photon detectors in the 3-13 mm wavelength range[J]. Applied Physics Letters, 1999, 74(19): 2881-2883. DOI: 10.1063/1.124045
|
[22] |
Piotr Martyniuk, Antoni Rogalski. Performance comparison of barrier detectors and HgCdTe photodiodes[J]. Optical Engineering, 2014, 53(10): 106105. DOI: 10.1117/1.OE.53.10.106105
|
[23] |
Kopytko M, Rogalski A. New insights into the ultimate performance of HgCdTe photodiodes[J]. Sensors and Actuators: A. Physical, 2022, 339: 113511. DOI: 10.1016/j.sna.2022.113511
|
[24] |
Kopytko M, Rogalski A. Performance evaluation of type-ii superlattice devices relative to HgCdTe photodiodes[J]. IEEE Transactions on Electron Devices, 2022, 69(6): 2992-3002. DOI: 10.1109/TED.2022.3164373
|
[1] | DAI Yueming, YANG Lufeng, TONG Xiongmin. Real-time Section State Verification Method of Energy Management System Low Voltage Equipment Based on Infrared Image and Deep Learning[J]. Infrared Technology , 2024, 46(12): 1464-1470. |
[2] | CHEN Qiuyan, ZHANG Xinyan, HE Min, TIAN Yichun, LIU Ning, GUO Rui, WANG Xiaohui, YOU Siyuan, ZHANG Xiukun. Identification of Pipeline Thermal Image Leakage Based on Deep Learning[J]. Infrared Technology , 2024, 46(5): 522-531. |
[3] | DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128. |
[4] | FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943. |
[5] | ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293. |
[6] | ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986. |
[7] | HE Qian, LIU Boyun. Review of Infrared Image Edge Detection Algorithms[J]. Infrared Technology , 2021, 43(3): 199-207. |
[8] | FAN Peng, FENG Wanxing, ZHOU Ziqiang, ZHAO Chun, ZHOU Sheng, YAO Xiangyu. Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis[J]. Infrared Technology , 2021, 43(1): 51-55. |
[9] | YANG Tao, DAI Jun, WU Zhongjian, JIN Daizhong, ZHOU Guojia. Target Recognition of Infrared Ship Based on Deep Learning[J]. Infrared Technology , 2020, 42(5): 426-433. |
[10] | JIAO Anbo, HE Miao, LUO Haibo. Research on Significant Edge Detection of Infrared Image Based on Deep Learning[J]. Infrared Technology , 2019, 41(1): 72-77. |