Citation: | YANG Xin, WANG Gang, LI Liang, LI Shaogang, GAO Jin, WANG Yizheng. Civil Drone Detection Based on Deep Convolutional Neural Networks: a Survey[J]. Infrared Technology , 2022, 44(11): 1119-1131. |
[1] |
WANG J, LIU Y, SONG H. Counter-unmanned aircraft system (s)(C-UAS): State of the art, challenges, and future trends[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(3): 4-29.
|
[2] |
LI Xiaoping, LEI Songze, ZHANG Boxing, et al. Fast aerial UAV detection using improved inter-frame difference and SVM[C]//Journal of Physics: Conference Series. IOP Publishing, 2019, 1187(3): 032082.
|
[3] |
WANG C, WANG T, WANG E, et al. Flying small target detection for anti-UAV based on a Gaussian mixture model in a compressive sensing domain[J]. Sensors, 2019, 19(9): 2168. DOI: 10.3390/s19092168
|
[4] |
Seidaliyeva U, Akhmetov D, Ilipbayeva L, et al. Real-time and accurate drone detection in a video with a static background[J]. Sensors, 2020, 20(14): 3856. DOI: 10.3390/s20143856
|
[5] |
ZHAO W, CHEN X, CHENG J, et al. An application of scale-invariant feature transform in iris recognition[C]//Proceedings of the IEEE/ACIS 12th International Conference on Computer and Information Science, IEEE, 2013: 219-222.
|
[6] |
SHU C, DING X, FANG C. Histogram of the oriented gradient for face recognition[J]. Tsinghua Science and Technology, 2011, 16(2): 216-224. DOI: 10.1016/S1007-0214(11)70032-3
|
[7] |
SHEN Y K, CHIU C T. Local binary pattern orientation based face recognition[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2015: 1091-1095.
|
[8] |
YUAN Xiaofang, WANG Yaonan. Parameter selection of support vector machine for function approximation based on chaos optimization[J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 191-197. DOI: 10.1016/S1004-4132(08)60066-3
|
[9] |
FENG J, WANG L, Sugiyama M, et al. Boosting and margin theory[J]. Frontiers of Electrical and Electronic Engineering, 2012, 7(1): 127-133. DOI: 10.1007/s11460-012-0188-9
|
[10] |
WEI L, HONG Z, Gui-Jin H. NMS-based blurred image sub-pixel registration[C]//Proceedings of the International Conference on Image Analysis and Signal Processing. IEEE, 2011: 98-101.
|
[11] |
罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239. DOI: 10.3969/j.issn.0372-2112.2020.06.026
LUO Huilan, CHEN Hongkun. Survey of object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(6): 1230-1239. DOI: 10.3969/j.issn.0372-2112.2020.06.026
|
[12] |
Bosquet B, Mucientes M, Brea V M. STDNet: exploiting high resolution feature maps for small object detection[J]. Engineering Applications of Artificial Intelligence, 2020, 91: 103615. DOI: 10.1016/j.engappai.2020.103615
|
[13] |
SUN H, YANG J, SHEN J, et al. TIB-Net: Drone detection network with tiny iterative backbone[J]. IEEE Access, 2020, 8: 130697-130707. DOI: 10.1109/ACCESS.2020.3009518
|
[14] |
LIU L, OUYANG W, WANG X, et al. Deep learning for generic object detection: a survey[J]. International Journal of Computer Vision, 2020, 128(2): 261-318. DOI: 10.1007/s11263-019-01247-4
|
[15] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
[16] |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Proceedings of the Advances in Neural Information Processing Systems, 2012, 25: 1097-1105.
|
[17] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824
|
[18] |
Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
[19] |
Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//Proceedings of the European Conference on Computer Vision, 2014: 818-833.
|
[20] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv preprint arXiv: 1409.1556, 2014.
|
[21] |
REN S, HE K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
|
[22] |
Bell S, Lawrence Zitnick C, Bala K, et al. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2874-2883.
|
[23] |
LE Q V, Jaitly N, Hinton G E. A simple way to initialize recurrent networks of rectified linear units[J/OL]. arXiv preprint arXiv: 1504.00941, 2015.
|
[24] |
DAI J, LI Y, HE K, et al. R-FCN: Object detection via region-based fully convolutional networks[J/OL]. arXiv preprint arXiv: 1605.06409, 2016.
|
[25] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[26] |
LIN T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
[27] |
He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
[28] |
XIE S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500.
|
[29] |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
|
[30] |
LI Y, CHEN Y, WANG N, et al. Scale-aware trident networks for object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 6054-6063.
|
[31] |
DUAN K, XIE L, QI H, et al. Corner proposal network for anchor-free, two-stage object detection[C]//European Conference on Computer Vision. Springer, Cham, 2020: 399-416.
|
[32] |
Newell A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the European Conference on Computer Vision, 2016: 483-499.
|
[33] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
[34] |
Szegedy C, LIU W, JIA Y, et al. Going deeper with convolutions [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
|
[35] |
LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Springer, 2016: 21-37.
|
[36] |
Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
|
[37] |
LIN T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
[38] |
Redmon J, Farhadi A. YOLOv3: An incremental improvement[J/OL]. arXiv preprint arXiv: 1804.02767, 2018.
|
[39] |
ZHOU P, NI B, GENG C, et al. Scale-transferrable object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 528-537.
|
[40] |
HUANG G, LIU Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
|
[41] |
LAW H, DENG J. Cornernet: Detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision, 2018: 734-750.
|
[42] |
Bochkovskiy A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. arXiv preprint arXiv: 2004.10934, 2020.
|
[43] |
Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision. Springer, Cham, 2020: 213-229.
|
[44] |
JIANG N, WANG K, PENG X, et al. Anti-UAV: A large multi-modal benchmark for UAV tracking[J]. arXiv preprint arXiv: 2101.08466, 2021.
|
[45] |
ZHAO J, WANG G, LI J, et al. The 2nd Anti-UAV Workshop & Challenge: Methods and results[J]. arXiv preprint arXiv: 2108.09909, 2021.
|
[46] |
Coluccia A, Fascista A, Schumann A, et al. Drone-vs-Bird detection challenge at IEEE AVSS2019[C]//Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance. IEEE, 2019: 1-7.
|
[47] |
WU M, XIE W, SHI X, et al. Real-time drone detection using deep learning approach[C]//Proceedings of the International Conference on Machine Learning and Intelligent Communications, 2018: 22-32.
|
[48] |
ZHAO W, ZHANG Q, LI H, et al. Low-altitude UAV detection method based on one-staged detection framework[C]//Proceedings of the International Conference on Advances in Computer Technology, Information Science and Communications IEEE, 2020: 112-117.
|
[49] |
Magoulianitis V, Ataloglou D, Dimou A, et al. Does deep super-resolution enhance UAV detection?[C]//Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance IEEE, 2019: 1-6.
|
[50] |
Kim J, Kwon Lee J, Mu Lee K. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.
|
[51] |
Craye C, Ardjoune S. Spatio-temporal semantic segmentation for drone detection[C]//Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance. IEEE, 2019: 1-5.
|
[52] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention, 2015: 234-241.
|
[53] |
Aker C. End-to-end Networks for Detection and Tracking of Micro Unmanned Aerial Vehicles[D]. Ankara, Turkey: Middle East Technical University, 2018.
|
[54] |
张锡联, 段海滨. 一种基于Gabor深度学习的无人机目标检测算法[J]. 空间控制技术与应用, 2019, 45(4): 38-45. DOI: 10.3969/j.issn.1674-1579.2019.04.005
ZHANG X, DUAN H. A target detection algorithm for UAV based on Gabor deep learning[J]. Aerospace Control and Application, 2019, 45(4): 38-45. DOI: 10.3969/j.issn.1674-1579.2019.04.005
|
[55] |
马旗, 朱斌, 张宏伟, 等. 基于优化YOLOv3的低空无人机检测识别方法[J]. 激光与光电子学进展, 2019, 56(20): 279-286. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201920027.htm
MA Q, ZHU B, ZHANG H, et al. Low-Altitude UAV detection and recognition method based on optimized YOLOv3[J]. Laser & Optoelectronics Progress, 2019, 56(20): 279-286. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201920027.htm
|
[56] |
Cohen M B, Elder S, Musco C, et al. Dimensionality reduction for k-means clustering and low rank approximation[C]//Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, 2015: 163-172.
|
[57] |
Saqib M, Khan S D, Sharma N, et al. A study on detecting drones using deep convolutional neural networks[C]//Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance. IEEE, 2017: 1-5.
|
[58] |
Nalamati M, Kapoor A, Saqib M, et al. Drone detection in long-range surveillance videos[C]//Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance. IEEE, 2019: 1-6.
|
[59] |
Aker C, Kalkan S. Using deep networks for drone detection[C]//Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance. IEEE, 2017: 1-6.
|
[60] |
张汝榛, 张建林, 祁小平, 等. 复杂场景下的红外目标检测[J]. 光电工程, 2020, 47(10): 128-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010010.htm
ZHANG R, ZHANG J, QI X, et al. Infrared target detection and recognition in complex scene[J]. Opto-Eletronic Engineering, 2020, 47(10): 128-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010010.htm
|
[61] |
刘俊明, 孟卫华. 融合全卷积神经网络和视觉显著性的红外小目标检测[J]. 光子学报, 2020, 49(7): 46-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007006.htm
LIU J, MENG W. Infrared small target detection based on fully convolutional neural network and visual saliency[J]. Acta Photonica Sincia, 2020, 49(7): 46-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007006.htm
|
[62] |
马旗, 朱斌, 程正东, 等. 基于双通道的快速低空无人机检测识别方法[J]. 光学学报, 2019, 39(12): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201912012.htm
MA Q, ZHU B, CHENG Z, et al. Detection and recognition method of fast low-altitude unmanned aerial vehicle based on dual channel[J]. Acta Optica Sinica, 2019, 39(12): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201912012.htm
|
[63] |
CUI Z, YANG J, JIANG S, et al. An infrared small target detection algorithm based on high-speed local contrast method[J]. Infrared Physics & Technology, 2016, 76: 474-481.
|
[64] |
ZHAO Y, PAN H, DU C, et al. Bilateral two-dimensional least mean square filter for infrared small target detection[J]. Infrared Physics & Technology, 2014, 65: 17-23.
|
[65] |
Lange H. Real-time contrasted target detection for IR imagery based on a multiscale top hat filter[C]//Signal Processing, Sensor Fusion, and Target Recognition VIII. International Society for Optics and Photonics, 1999, 3720: 214-226.
|
[66] |
BAI X, ZHOU F, ZHANG S, et al. Top-Hat by the reconstruction operation-based infrared small target detection[C]//Proceedings of the International Conference in Electrics, Communication and Automatic Control Proceedings, 2012: 867-873.
|
[67] |
王刚, 陈永光, 杨锁昌, 等. 采用图像块对比特性的红外弱小目标检测[J]. 光学精密工程, 2015, 23(5): 1424-1433. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201505029.htm
WANG G, CHEN Y, YANG S, et al. Infrared dim and small target detection using image block contrast characteristics[J]. Optics and Precision Engineering, 2015, 23(5): 1424-1433. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201505029.htm
|
[68] |
吴双忱, 左峥嵘. 基于深度卷积神经网络的红外小目标检测[J]. 红外与毫米波学报, 2019, 38(3): 371-380. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201903019.htm
WU S, ZUO Z. Infrared small target detection based on deep convolutional neural network[J]. Journal of Infrared and Millimeter Waves, 2019, 38(3): 371-380. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201903019.htm
|
[69] |
李俊宏, 张萍, 王晓玮, 等. 红外弱小目标检测算法综述[J]. 中国图象图形学报, 2020, 25(9): 1739-1753. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202009002.htm
LI J, ZHANG P, WANG X, et al. A survey of infrared dim target detection algorithms[J]. Journal of Image and Graphics, 2020, 25(9): 1739-1753. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202009002.htm
|
[70] |
Horn B K P, Schunck B G. Determining optical flow[C]//Techniques and Applications of Image Understanding. International Society for Optics and Photonics, 1981, 281: 319-331.
|
[71] |
Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 1981: 674-679.
|
[72] |
Dosovitskiy A, Fischer P, Ilg E, et al. Flownet: Learning optical flow with convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 2758-2766.
|
[73] |
Ilg E, Mayer N, Saikia T, et al. FlowNet 2.0: Evolution of optical flow estimation with deep networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2462-2470.
|
[74] |
Teed Z, Deng J. Raft: Recurrent all-pairs field transforms for optical flow[C]// Proceedings of the European Conference on Computer Vision, 2020: 402-419.
|
[75] |
ZHU X, XIONG Y, DAI J, et al. Deep feature flow for video recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2349-2358.
|
[76] |
ZHU X, WANG Y, DAI J, et al. Flow-guided feature aggregation for video object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 408-417.
|
[77] |
Rozantsev A, Lepetit V, Fua P. Flying objects detection from a single moving camera[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 4128-4136.
|
[78] |
Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision, 2016: 850-865.
|
[79] |
Stewart R, Andriluka M, Ng A Y. End-to-end people detection in crowded scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2325-2333.
|
[80] |
ZHAO B, ZHAO B, TANG L, et al. Deep spatial-temporal joint feature representation for video object detection[J]. Sensors, 2018, 18(3): 774.
|
[81] |
刘宜成, 廖鹭川, 张劲, 等. 基于轨迹和形态识别的无人机检测方法[J]. 计算机工程, 2020, 46(12): 283-289. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202012038.htm
LIU Y, LIAO L, ZHANG J, et al. UAV detection method based on trajectory and shape recognition[J]. Computer Engineering, 2018, 18(3): 774. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202012038.htm
|
[82] |
吴飞, 阳春华, 兰旭光, 等. 人工智能的回顾与展望[J]. 中国科学基金, 2018, 32(3): 243-250. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201803002.htm
WU F, YANG C H, LAN X, et al. Retrospect and prospect of artificial intelligence[J]. Bulletin of National Natural Science Foundation of China, 2018, 32(3): 243-250. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201803002.htm
|