Citation: | LI Xinwei, YANG Tian. Double-Branch DenseNet-Transformer Hyperspectral Image Classification[J]. Infrared Technology , 2022, 44(11): 1210-1219. |
[1] |
ZHONG Y, MA A, Ong Y soon, et al. Computational intelligence in optical remote sensing image processing[J]. Applied Soft Computing, 2018, 64: 75-93. DOI: 10.1016/j.asoc.2017.11.045
|
[2] |
LI Z, HUANG L, HE J. A multiscale deep middle-level feature fusion network for hyperspectral classification[J]. Remote Sensing, 2019, 11(6): 695. DOI: 10.3390/rs11060695
|
[3] |
Mahdianpari M, Salehi B, Rezaee M, et al. Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery[J]. Remote Sensing, 2018, 10(7): 1119. DOI: 10.3390/rs10071119
|
[4] |
Pipitone C, Maltese A, Dardanelli G, et al. Monitoring water surface and level of a reservoir using different remote sensing approaches and comparison with dam displacements evaluated via GNSS[J]. Remote Sensing, 2018, 10(1): 71. DOI: 10.3390/rs10010071
|
[5] |
ZHAO C, WANG Y, QI B, et al. Global and local real-time anomaly detectors for hyperspectral remote sensing imagery[J]. Remote Sensing, 2015, 7(4): 3966-3985. DOI: 10.3390/rs70403966
|
[6] |
Awad M, Jomaa I, Arab F. Improved capability in stone pine forest mapping and management in lebanon using hyperspectral CHRIS-Proba data relative to landsat ETM+[J]. Photogrammetric Engineering & Remote Sensing, 2014, 80(8): 725-731.
|
[7] |
Ibrahim A, Franz B, Ahmad Z, et al. Atmospheric correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal Ocean (HICO)[J]. Remote Sensing of Environment, 2018, 204: 60-75. DOI: 10.1016/j.rse.2017.10.041
|
[8] |
Marinelli D, Bovolo F, Bruzzone L. A Novel change detection method for multitemporal hyperspectral images based on binary hyperspectral change vectors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4913-4928. DOI: 10.1109/TGRS.2019.2894339
|
[9] |
LI J, Bioucas Dias J M, Plaza A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11): 4085-4098.
|
[10] |
LI J, Bioucas Dias J M, Plaza A. spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 809-823. DOI: 10.1109/TGRS.2011.2162649
|
[11] |
FANG L, LI S, DUAN W, et al. Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via Multiple Kernels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6663–6674. DOI: 10.1109/TGRS.2015.2445767
|
[12] |
Camps Valls G, Gomez Chova L, Munoz Mari J, et al. Composite Kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 93–97. DOI: 10.1109/LGRS.2005.857031
|
[13] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
|
[14] |
Shelhamer E, LONG J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. DOI: 10.1109/TPAMI.2016.2572683
|
[15] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824
|
[16] |
ZHAO W, DU S. Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4544-4554. DOI: 10.1109/TGRS.2016.2543748
|
[17] |
LEE H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2017, 26(10): 4843-4855. DOI: 10.1109/TIP.2017.2725580
|
[18] |
CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232–6251. DOI: 10.1109/TGRS.2016.2584107
|
[19] |
HUANG G, LIU Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 4700-4708.
|
[20] |
ZHONG Z, LI J, LUO Z, et al. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847–858. DOI: 10.1109/TGRS.2017.2755542
|
[21] |
WANG W, DOU S, JIANG Z, et al. A fast dense spectral–spatial convolution network framework for hyperspectral images classification[J]. Remote Sensing, 2018, 10(7): 1068. DOI: 10.3390/rs10071068
|
[22] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
|
[23] |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[J/OL]. Computer Vision and Pattern Recognition, 2021, https://arxiv.org/abs/2103.14030.
|
[24] |
FANG B, LI Y, ZHANG H, et al. Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism[J]. Remote Sensing, 2019, 11(2): 159. DOI: 10.3390/rs11020159
|
[25] |
MA W, YANG Q, WU Y, et al. Double-branch multi-attention mechanism network for hyperspectral image classification[J]. Remote Sensing, 2019, 11(11): 1307. DOI: 10.3390/rs11111307
|
[26] |
LI R, ZHENG S, DUAN C, et al. Classification of hyperspectral image based on double-branch dual-attention mechanism network[J]. Remote Sensing, 2020, 12(3): 582. DOI: 10.3390/rs12030582
|
[27] |
ZHONG Z, LI Y, MA L, et al. Spectral-spatial transformer network for hyperspectral image classification: a factorized architecture search framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, Doi: 10.1109/TGRS.2021.3115699.
|
[28] |
MEI X, PAN E, MA Y, et al. Spectral-spatial attention networks for hyperspectral image classification[J]. Remote Sensing, 2019, 11(8): 963. DOI: 10.3390/rs11080963
|
[29] |
SUN H, ZHENG X, LU X, et al. Spectral–spatial attention network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3232–3245. DOI: 10.1109/TGRS.2019.2951160
|
[1] | DENG Changzheng, LIU Mingze, FU Tian, GONG Mengqing, LUO Bingjie. Infrared Image Recognition of Substation Equipment Based on Improved YOLOv7-Tiny Algorithm[J]. Infrared Technology , 2025, 47(1): 44-51. |
[2] | WANG Chongwen, PENG Tinghai, LUO Rui, LIU Jian, YANG Yuping, WANG Shijin, YAN Tingyu, GE Fan, LIU Yanfang, LIU Yunhong. Tropical Marine Environmental Adaptability of Germanium Coated Infrared Antireflection Film[J]. Infrared Technology , 2024, 46(8): 957-964. |
[3] | ZHOU Huikui, ZHANG Li, HU Sujuan. Underwater Image Enhancement Based on Improved Histogram Matching and Adaptive Equalization[J]. Infrared Technology , 2024, 46(5): 532-538. |
[4] | YANG Yuping, LIU Jian, ZHOU Xiaoyu, ZHAO Hongkun, LIU Yanfang, WANG Chongwen, ZHAO Yuanrong, GE Fan, XIAO Jianjun, LUO Rui, YANG Pinjie. Environmental Adaptability of Infrared Antireflection Films in Humid Hot Rain Forest[J]. Infrared Technology , 2021, 43(12): 1197-1201. |
[5] | TANG Changming, ZHONG Jianfeng, ZHONG Shuncong, CHEN Man, FU Xibin, HUANG Xuebin. Ultrasound Infrared Thermography Defect Recognition Based on Improved Adaptive Genetic Algorithm with Two-Dimensional Maximum Entropy[J]. Infrared Technology , 2020, 42(8): 801-808. |
[6] | WANG Chongwen, ZHAO Hongkun, LIU Jian, WANG Qiaofang, ZHU Guangyu, YANG Yuping, LUO Rui, ZHAO Yuanrong, LI Wei, LIU Yanfang, GE Fan. Dissecting the Adaptability of OLED Displays in Tropical Rainforest[J]. Infrared Technology , 2020, 42(6): 542-546. |
[7] | JING Weiguo, SUN Mingzhao, LI Yongtao. Novel Experimental Method of Intense Light Adaptability of Night Vision Systems with Large Dynamic Range[J]. Infrared Technology , 2019, 41(7): 689-692. |
[8] | LIU Hui, SHI Xiaolong. Improved GrabCut Segmentation Based on Salience and Superpixels[J]. Infrared Technology , 2018, 40(1): 55-61. |
[9] | Improved Adaptive Segmentation Non-uniformity Correction Method for IRFPA[J]. Infrared Technology , 2017, 39(3): 209-213. |
[10] | ZHANG Jin-cheng, LIAO Shou-yi, ZHANG Zuo-yu, SU De-lun, YAN Xun-liang. Real-time Improvement for Resistor Array Nonuniformity Correction[J]. Infrared Technology , 2015, 37(11): 921-925. |