Citation: | LI Xinwei, YANG Tian. Double-Branch DenseNet-Transformer Hyperspectral Image Classification[J]. Infrared Technology , 2022, 44(11): 1210-1219. |
[1] |
ZHONG Y, MA A, Ong Y soon, et al. Computational intelligence in optical remote sensing image processing[J]. Applied Soft Computing, 2018, 64: 75-93. DOI: 10.1016/j.asoc.2017.11.045
|
[2] |
LI Z, HUANG L, HE J. A multiscale deep middle-level feature fusion network for hyperspectral classification[J]. Remote Sensing, 2019, 11(6): 695. DOI: 10.3390/rs11060695
|
[3] |
Mahdianpari M, Salehi B, Rezaee M, et al. Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery[J]. Remote Sensing, 2018, 10(7): 1119. DOI: 10.3390/rs10071119
|
[4] |
Pipitone C, Maltese A, Dardanelli G, et al. Monitoring water surface and level of a reservoir using different remote sensing approaches and comparison with dam displacements evaluated via GNSS[J]. Remote Sensing, 2018, 10(1): 71. DOI: 10.3390/rs10010071
|
[5] |
ZHAO C, WANG Y, QI B, et al. Global and local real-time anomaly detectors for hyperspectral remote sensing imagery[J]. Remote Sensing, 2015, 7(4): 3966-3985. DOI: 10.3390/rs70403966
|
[6] |
Awad M, Jomaa I, Arab F. Improved capability in stone pine forest mapping and management in lebanon using hyperspectral CHRIS-Proba data relative to landsat ETM+[J]. Photogrammetric Engineering & Remote Sensing, 2014, 80(8): 725-731.
|
[7] |
Ibrahim A, Franz B, Ahmad Z, et al. Atmospheric correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal Ocean (HICO)[J]. Remote Sensing of Environment, 2018, 204: 60-75. DOI: 10.1016/j.rse.2017.10.041
|
[8] |
Marinelli D, Bovolo F, Bruzzone L. A Novel change detection method for multitemporal hyperspectral images based on binary hyperspectral change vectors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4913-4928. DOI: 10.1109/TGRS.2019.2894339
|
[9] |
LI J, Bioucas Dias J M, Plaza A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11): 4085-4098.
|
[10] |
LI J, Bioucas Dias J M, Plaza A. spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 809-823. DOI: 10.1109/TGRS.2011.2162649
|
[11] |
FANG L, LI S, DUAN W, et al. Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via Multiple Kernels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6663–6674. DOI: 10.1109/TGRS.2015.2445767
|
[12] |
Camps Valls G, Gomez Chova L, Munoz Mari J, et al. Composite Kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 93–97. DOI: 10.1109/LGRS.2005.857031
|
[13] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
|
[14] |
Shelhamer E, LONG J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. DOI: 10.1109/TPAMI.2016.2572683
|
[15] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824
|
[16] |
ZHAO W, DU S. Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4544-4554. DOI: 10.1109/TGRS.2016.2543748
|
[17] |
LEE H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2017, 26(10): 4843-4855. DOI: 10.1109/TIP.2017.2725580
|
[18] |
CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232–6251. DOI: 10.1109/TGRS.2016.2584107
|
[19] |
HUANG G, LIU Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 4700-4708.
|
[20] |
ZHONG Z, LI J, LUO Z, et al. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847–858. DOI: 10.1109/TGRS.2017.2755542
|
[21] |
WANG W, DOU S, JIANG Z, et al. A fast dense spectral–spatial convolution network framework for hyperspectral images classification[J]. Remote Sensing, 2018, 10(7): 1068. DOI: 10.3390/rs10071068
|
[22] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
|
[23] |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[J/OL]. Computer Vision and Pattern Recognition, 2021, https://arxiv.org/abs/2103.14030.
|
[24] |
FANG B, LI Y, ZHANG H, et al. Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism[J]. Remote Sensing, 2019, 11(2): 159. DOI: 10.3390/rs11020159
|
[25] |
MA W, YANG Q, WU Y, et al. Double-branch multi-attention mechanism network for hyperspectral image classification[J]. Remote Sensing, 2019, 11(11): 1307. DOI: 10.3390/rs11111307
|
[26] |
LI R, ZHENG S, DUAN C, et al. Classification of hyperspectral image based on double-branch dual-attention mechanism network[J]. Remote Sensing, 2020, 12(3): 582. DOI: 10.3390/rs12030582
|
[27] |
ZHONG Z, LI Y, MA L, et al. Spectral-spatial transformer network for hyperspectral image classification: a factorized architecture search framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, Doi: 10.1109/TGRS.2021.3115699.
|
[28] |
MEI X, PAN E, MA Y, et al. Spectral-spatial attention networks for hyperspectral image classification[J]. Remote Sensing, 2019, 11(8): 963. DOI: 10.3390/rs11080963
|
[29] |
SUN H, ZHENG X, LU X, et al. Spectral–spatial attention network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3232–3245. DOI: 10.1109/TGRS.2019.2951160
|
[1] | XU Haiyang, ZHAO Wei, LIU Jianye. Infrared and Visible Image Registration Algorithm Based on Edge Structure Features[J]. Infrared Technology , 2023, 45(8): 858-862. |
[2] | LI Bicao, LU Jiaxi, LIU Zhoufeng, LI Chunlei, ZHANG Jie. Infrared and Visible Light Image Fusion Method Based on Swin Transformer and Hybrid Feature Aggregation[J]. Infrared Technology , 2023, 45(7): 721-731. |
[3] | WANG Xiangjun, DU Zhiwei, GAO Chao. Small Scale Fire Identification Based on Constrained Inhomogeneous Deformation Feature[J]. Infrared Technology , 2021, 43(2): 145-152. |
[4] | LI Ruidong, SUN Xiechang, LI Meng. Infrared Feature Extraction and Recognition Technology of Space Target[J]. Infrared Technology , 2017, 39(5): 427-435. |
[5] | ZHANG Chen, ZHAO Hong-ying, QIAN Xu. Research on Object Feature Tracking Method Oriented to UAV Images[J]. Infrared Technology , 2015, (3): 224-228,239. |
[6] | ZHAO De-li, ZHU You-pan, WU Cheng, LI Ze-min, ZENG Bang-ze, LUO Lin, YANG Peng-wei, WANG Bing, LI Yan. Investigation on Improved Infrared Image Registration Algorithm Based on Point Feature and Gray Feature[J]. Infrared Technology , 2014, (10): 820-826. |
[7] | Study on Image Registration Method Based on Region Feature[J]. Infrared Technology , 2010, 32(3): 145-147,151. DOI: 10.3969/j.issn.1001-8891.2010.03.006 |
[8] | CHEN Ya-bing, WANG Yong-zhong, WANG Yan-hua. IR Feature Extraction Based on Imbalance Fisher Discrimination[J]. Infrared Technology , 2008, 30(7): 395-398. DOI: 10.3969/j.issn.1001-8891.2008.07.007 |
[9] | LUO Xiao-an, CAI Chao, ZHOU Cheng-ping, DING Ming-yue, ZHANG Yi-guang, ZHANG Tian-xu. A New Fast Algorithm for Contour Descriptor[J]. Infrared Technology , 2006, 28(8): 446-452. DOI: 10.3969/j.issn.1001-8891.2006.08.004 |
[10] | ZHAO Qin, ZHOU Tao, SHU Qin. Discussion of Image Registration Based on Feature Points[J]. Infrared Technology , 2006, 28(6): 327-330. DOI: 10.3969/j.issn.1001-8891.2006.06.005 |