LI Xinwei, YANG Tian. Double-Branch DenseNet-Transformer Hyperspectral Image Classification[J]. Infrared Technology , 2022, 44(11): 1210-1219.
Citation: LI Xinwei, YANG Tian. Double-Branch DenseNet-Transformer Hyperspectral Image Classification[J]. Infrared Technology , 2022, 44(11): 1210-1219.

Double-Branch DenseNet-Transformer Hyperspectral Image Classification

More Information
  • Received Date: July 31, 2022
  • Revised Date: September 12, 2022
  • To reduce the training samples of hyperspectral images and obtain better classification results, a double-branch deep network model based on DenseNet and a spatial-spectral transformer was proposed in this study. The model includes two branches for extracting the spatial and spectral features of the images in parallel. First, the spatial and spectral information of the sub-images was initially extracted using 3D convolution in each branch. Then, the deep features were extracted through a DenseNet comprising batch normalization, mish function, and 3D convolution. Next, the two branches utilized the spectral transformer module and spatial transformer module to further enhance the feature extraction ability of the network. Finally, the output characteristic maps of the two branches were fused and the final classification results were obtained. The model was tested on Indian pine, University of Pavia, Salinas Valley, and Kennedy Space Center datasets, and its performance was compared with six types of current methods. The results demonstrate that the overall classification accuracies of our model are 95.75%, 96.75%, 95.63%, and 98.01%, respectively when the proportion of the training set of Indian pines is 3% and the proportion of the training set of the rest is 0.5%. The overall performance was better than that of other methods.
  • [1]
    ZHONG Y, MA A, Ong Y soon, et al. Computational intelligence in optical remote sensing image processing[J]. Applied Soft Computing, 2018, 64: 75-93. DOI: 10.1016/j.asoc.2017.11.045
    [2]
    LI Z, HUANG L, HE J. A multiscale deep middle-level feature fusion network for hyperspectral classification[J]. Remote Sensing, 2019, 11(6): 695. DOI: 10.3390/rs11060695
    [3]
    Mahdianpari M, Salehi B, Rezaee M, et al. Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery[J]. Remote Sensing, 2018, 10(7): 1119. DOI: 10.3390/rs10071119
    [4]
    Pipitone C, Maltese A, Dardanelli G, et al. Monitoring water surface and level of a reservoir using different remote sensing approaches and comparison with dam displacements evaluated via GNSS[J]. Remote Sensing, 2018, 10(1): 71. DOI: 10.3390/rs10010071
    [5]
    ZHAO C, WANG Y, QI B, et al. Global and local real-time anomaly detectors for hyperspectral remote sensing imagery[J]. Remote Sensing, 2015, 7(4): 3966-3985. DOI: 10.3390/rs70403966
    [6]
    Awad M, Jomaa I, Arab F. Improved capability in stone pine forest mapping and management in lebanon using hyperspectral CHRIS-Proba data relative to landsat ETM+[J]. Photogrammetric Engineering & Remote Sensing, 2014, 80(8): 725-731.
    [7]
    Ibrahim A, Franz B, Ahmad Z, et al. Atmospheric correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal Ocean (HICO)[J]. Remote Sensing of Environment, 2018, 204: 60-75. DOI: 10.1016/j.rse.2017.10.041
    [8]
    Marinelli D, Bovolo F, Bruzzone L. A Novel change detection method for multitemporal hyperspectral images based on binary hyperspectral change vectors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4913-4928. DOI: 10.1109/TGRS.2019.2894339
    [9]
    LI J, Bioucas Dias J M, Plaza A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11): 4085-4098.
    [10]
    LI J, Bioucas Dias J M, Plaza A. spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 809-823. DOI: 10.1109/TGRS.2011.2162649
    [11]
    FANG L, LI S, DUAN W, et al. Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via Multiple Kernels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6663–6674. DOI: 10.1109/TGRS.2015.2445767
    [12]
    Camps Valls G, Gomez Chova L, Munoz Mari J, et al. Composite Kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 93–97. DOI: 10.1109/LGRS.2005.857031
    [13]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
    [14]
    Shelhamer E, LONG J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. DOI: 10.1109/TPAMI.2016.2572683
    [15]
    HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824
    [16]
    ZHAO W, DU S. Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4544-4554. DOI: 10.1109/TGRS.2016.2543748
    [17]
    LEE H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2017, 26(10): 4843-4855. DOI: 10.1109/TIP.2017.2725580
    [18]
    CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232–6251. DOI: 10.1109/TGRS.2016.2584107
    [19]
    HUANG G, LIU Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 4700-4708.
    [20]
    ZHONG Z, LI J, LUO Z, et al. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847–858. DOI: 10.1109/TGRS.2017.2755542
    [21]
    WANG W, DOU S, JIANG Z, et al. A fast dense spectral–spatial convolution network framework for hyperspectral images classification[J]. Remote Sensing, 2018, 10(7): 1068. DOI: 10.3390/rs10071068
    [22]
    Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
    [23]
    LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[J/OL]. Computer Vision and Pattern Recognition, 2021, https://arxiv.org/abs/2103.14030.
    [24]
    FANG B, LI Y, ZHANG H, et al. Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism[J]. Remote Sensing, 2019, 11(2): 159. DOI: 10.3390/rs11020159
    [25]
    MA W, YANG Q, WU Y, et al. Double-branch multi-attention mechanism network for hyperspectral image classification[J]. Remote Sensing, 2019, 11(11): 1307. DOI: 10.3390/rs11111307
    [26]
    LI R, ZHENG S, DUAN C, et al. Classification of hyperspectral image based on double-branch dual-attention mechanism network[J]. Remote Sensing, 2020, 12(3): 582. DOI: 10.3390/rs12030582
    [27]
    ZHONG Z, LI Y, MA L, et al. Spectral-spatial transformer network for hyperspectral image classification: a factorized architecture search framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, Doi: 10.1109/TGRS.2021.3115699.
    [28]
    MEI X, PAN E, MA Y, et al. Spectral-spatial attention networks for hyperspectral image classification[J]. Remote Sensing, 2019, 11(8): 963. DOI: 10.3390/rs11080963
    [29]
    SUN H, ZHENG X, LU X, et al. Spectral–spatial attention network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3232–3245. DOI: 10.1109/TGRS.2019.2951160
  • Related Articles

    [1]XU Haiyang, ZHAO Wei, LIU Jianye. Infrared and Visible Image Registration Algorithm Based on Edge Structure Features[J]. Infrared Technology , 2023, 45(8): 858-862.
    [2]LI Bicao, LU Jiaxi, LIU Zhoufeng, LI Chunlei, ZHANG Jie. Infrared and Visible Light Image Fusion Method Based on Swin Transformer and Hybrid Feature Aggregation[J]. Infrared Technology , 2023, 45(7): 721-731.
    [3]WANG Xiangjun, DU Zhiwei, GAO Chao. Small Scale Fire Identification Based on Constrained Inhomogeneous Deformation Feature[J]. Infrared Technology , 2021, 43(2): 145-152.
    [4]LI Ruidong, SUN Xiechang, LI Meng. Infrared Feature Extraction and Recognition Technology of Space Target[J]. Infrared Technology , 2017, 39(5): 427-435.
    [5]ZHANG Chen, ZHAO Hong-ying, QIAN Xu. Research on Object Feature Tracking Method Oriented to UAV Images[J]. Infrared Technology , 2015, (3): 224-228,239.
    [6]ZHAO De-li, ZHU You-pan, WU Cheng, LI Ze-min, ZENG Bang-ze, LUO Lin, YANG Peng-wei, WANG Bing, LI Yan. Investigation on Improved Infrared Image Registration Algorithm Based on Point Feature and Gray Feature[J]. Infrared Technology , 2014, (10): 820-826.
    [7]Study on Image Registration Method Based on Region Feature[J]. Infrared Technology , 2010, 32(3): 145-147,151. DOI: 10.3969/j.issn.1001-8891.2010.03.006
    [8]CHEN Ya-bing, WANG Yong-zhong, WANG Yan-hua. IR Feature Extraction Based on Imbalance Fisher Discrimination[J]. Infrared Technology , 2008, 30(7): 395-398. DOI: 10.3969/j.issn.1001-8891.2008.07.007
    [9]LUO Xiao-an, CAI Chao, ZHOU Cheng-ping, DING Ming-yue, ZHANG Yi-guang, ZHANG Tian-xu. A New Fast Algorithm for Contour Descriptor[J]. Infrared Technology , 2006, 28(8): 446-452. DOI: 10.3969/j.issn.1001-8891.2006.08.004
    [10]ZHAO Qin, ZHOU Tao, SHU Qin. Discussion of Image Registration Based on Feature Points[J]. Infrared Technology , 2006, 28(6): 327-330. DOI: 10.3969/j.issn.1001-8891.2006.06.005

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return