WANG Xiangjun, DU Zhiwei, GAO Chao. Small Scale Fire Identification Based on Constrained Inhomogeneous Deformation Feature[J]. Infrared Technology , 2021, 43(2): 145-152.
Citation: WANG Xiangjun, DU Zhiwei, GAO Chao. Small Scale Fire Identification Based on Constrained Inhomogeneous Deformation Feature[J]. Infrared Technology , 2021, 43(2): 145-152.

Small Scale Fire Identification Based on Constrained Inhomogeneous Deformation Feature

More Information
  • Received Date: October 10, 2019
  • Revised Date: December 29, 2020
  • Video based fire detection(VFD) is a convenient, low-cost method widely used in fire detection. However, it's not credible enough to distinguish true fire from possible disruptors by traditional fire features. This paper extract two new features to analyze the time series behavior of fire based on the motion of edge pixels. The inter frame behavior of edge pixels is regarded as a nonuniformty constrained deformation procedure. Combined with HMM and additional geometric features to distinguish true fire from possible disruptors, the accuracy of fire detection is greatly improved and the false alarm rateis efficiently reduced.
  • [1]
    Çetin A E, Dimitropoulos K, Gouverneur B, et al. Video fire detection -review[J]. Digital Signal Processing, 2013, 23(6): 1827-1843. DOI: 10.1016/j.dsp.2013.07.003
    [2]
    Owrutsky J C, Steinhurst D A, Minor C P, et al. Long wavelength video detection of fire in ship compartments[J]. Fire Safety Journal, 2006, 41(4): 315-320. DOI: 10.1016/j.firesaf.2005.11.011
    [3]
    Toreyin B U, Cinbis R G, Dedeoglu Y, et al. Fire detection in infrared video using wavelet analysis[J]. Optical Engineering, 2007, 46(6): 067204. DOI: 10.1117/1.2748752
    [4]
    李涛, 向涛, 黄仁杰, 等. 基于新的运动特征的火焰检测方法[J]. 计算机仿真, 2014, 31(9): 392-396. DOI: 10.3969/j.issn.1006-9348.2014.09.087

    LI Tao, XIANG Tao, HUANG Renjie, et al. Fire detection method based on new moving feature[J]. Computer Simulation, 2014, 31(9): 392-396. DOI: 10.3969/j.issn.1006-9348.2014.09.087
    [5]
    朱思思, 丁德红, 陈朝迎, 等. 基于图像处理的森林火灾识别方法研究[J]. 红外技术, 2016, 38(5): 440-446. http://hwjs.nvir.cn/article/id/hwjs201605014

    ZHU Sisi, DING Dehong, CHEN Zhaoying, et al. The research of forest fire recognition method based on image processing[J]. Infrared Technology, 2016, 38(5): 440-446. http://hwjs.nvir.cn/article/id/hwjs201605014
    [6]
    陈娟. 基于多特征融合的视频火焰探测方法研究[D]. 北京: 中国科学技术大学, 2009.

    CHEN Juan. Study on Method of Multi-Feature Fusion Based Video Flame Detection[D]. Beijing: University of Science and Technology of China, 2009.
    [7]
    CHEN J H, Im H G. Correlation of flame speed with stretch in turbulent premixed methane/air flames[J]. Symposium (International) on Combustion, 1997, 27(1): 819-826.
    [8]
    Hamins A, Yang J C, Kashiwagi T, An experimental investigation of the pulsation frequency of flames[J]. Symposium(International) on Combustion, 1992, 24(1): 1695-1702. http://www.sciencedirect.com/science/article/pii/S0082078406801980
    [9]
    Chaconmurguia M I, Perezvargas F J. Thermal video analysis for fire detection using shape regularity and intensity saturation features[C]//Mexican Conference on Pattern Recognition, 2011: 118-126.
    [10]
    Takahashi N, Suzuki M, Dobashi R, et al. Behavior of luminous zones appearing on plumes of large-scale pool fires of kerosene[J]. Fire Safety Journal, 1999, 33(1): 1-10. DOI: 10.1016/S0379-7112(99)00009-0
    [11]
    程鑫, 王大川, 尹东良. 图像型火灾火焰探测原理[J]. 火灾科学, 2005(4): 239-245, 196. https://www.cnki.com.cn/Article/CJFDTOTAL-HZKX200504007.htm

    CHENG Xin, WANG Dachuan, YIN Dongliang. Image type fire flame detecting principle[J]. Fire Safety Science, 2005(4): 239-245, 196. https://www.cnki.com.cn/Article/CJFDTOTAL-HZKX200504007.htm
    [12]
    Paresh P A, Parameswaran L. Vision-based algorithm for fire detection in smart buildings[C]//International Conference on ISMAC in Computational Vision and Bio-Engineering, 2018: 1029-1038.
    [13]
    Kegl B, Krzyzak A, Linder T, et al. A polygonal line algorithm for constructing principal curves[C]//Neural Information Processing Systems, 1998: 501-507.
    [14]
    WU Z, Fuller N W, Theriault D H, et al. A thermal infrared video benchmark for visual analysis[C]//Computer Vision and Pattern Recognition, 2014: 201-208.
  • Related Articles

    [1]XU Haiyang, ZHAO Wei, LIU Jianye. Infrared and Visible Image Registration Algorithm Based on Edge Structure Features[J]. Infrared Technology , 2023, 45(8): 858-862.
    [2]ZHAO Tiancheng, LUO Lyu, YANG Daiyong, LIU He, YUAN Gang, XU Zhihao. A Multi-Attribute Fusion Method for Digitizing Infrared Thermal Characteristics of Power Equipment[J]. Infrared Technology , 2021, 43(11): 1097-1103.
    [3]YIN Aijun, YAO Wenjie. The Evaluation Method and Application of Hidden Markov in Eddy Current Thermal Imaging[J]. Infrared Technology , 2019, 41(12): 1141-1145,1150.
    [4]LI Ruidong, SUN Xiechang, LI Meng. Infrared Feature Extraction and Recognition Technology of Space Target[J]. Infrared Technology , 2017, 39(5): 427-435.
    [5]XU Dehai, WEI Xueming, PENG Yao, MIAO Kang, REN Mingyi. Feature Extraction and Recognition of Ships by an Uncompleted Dictionary[J]. Infrared Technology , 2016, 38(9): 765-769.
    [6]WANG Kun, ZHANG Kai, WANG Li, ZHUGE Jing-chang. Infrared Image Segmentation Based on MRF Combined with Two-algorithm Game[J]. Infrared Technology , 2015, (2): 134-138.
    [7]WANG Kun, ZHANG Kai, WANG Li, ZHUGE Jing-chang. Infrared Image Segmentation Algorithm Based on MRF Combined with the Game-theory[J]. Infrared Technology , 2014, (10): 801-806.
    [8]CHEN Ya-bing, WANG Yong-zhong, WANG Yan-hua. IR Feature Extraction Based on Imbalance Fisher Discrimination[J]. Infrared Technology , 2008, 30(7): 395-398. DOI: 10.3969/j.issn.1001-8891.2008.07.007
    [9]A Tracking Method Based on Curve Fitting Prediction of IR Object[J]. Infrared Technology , 2003, 25(4): 23-25,31. DOI: 10.3969/j.issn.1001-8891.2003.04.006
    [10]Application of the Characteristic Extraction for the Detection of the Internal Micro Bulk Defects in Semiconducting Materials by Near Infrared Laser Scattering Light Distribution Analyze Technology[J]. Infrared Technology , 2002, 24(3): 23-26. DOI: 10.3969/j.issn.1001-8891.2002.03.006
  • Cited by

    Periodical cited type(4)

    1. 陈秋艳,贺敏,张新燕,陈泽锋,潘中清,罗睿. 基于图像处理的复杂场景火焰识别与火灾判定方法. 国外电子测量技术. 2024(05): 144-153 .
    2. 赵阳,刘俊蕾,付旭峰,王征,王海懿. 基于卷积神经网络的火焰智能识别研究. 自动化技术与应用. 2023(11): 64-67 .
    3. 常丽,张雪,蒋辉,杨娟,万紫玉. 融合YOLOv5s与SRGAN的实时隧道火灾检测. 电子测量与仪器学报. 2022(08): 223-230 .
    4. 马庆禄,马恋,孔国英,赵映慈. 基于红外热成像的隧道火焰检测技术研究. 火灾科学. 2022(04): 244-251 .

    Other cited types(6)

Catalog

    Article views (224) PDF downloads (35) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return