WU Haoyu, GUO Xin, GAN Linyu, CHEN Peng, XU Zhifeng, LIU Hui, JIAO Gangcheng, ZHU Yufeng, REN Yutian. Influence of Chamber Gas Composition on the Stability of GaAs Photocathode[J]. Infrared Technology , 2022, 44(8): 824-827.
Citation: WU Haoyu, GUO Xin, GAN Linyu, CHEN Peng, XU Zhifeng, LIU Hui, JIAO Gangcheng, ZHU Yufeng, REN Yutian. Influence of Chamber Gas Composition on the Stability of GaAs Photocathode[J]. Infrared Technology , 2022, 44(8): 824-827.

Influence of Chamber Gas Composition on the Stability of GaAs Photocathode

More Information
  • Received Date: November 02, 2021
  • Revised Date: December 01, 2021
  • GaAs photocathodes are widely used in low-light night vision owing to their high quantum efficiency and adjustable spectra. In particular, they are distinguished from multi-alkali photocathodes based on their high integration sensitivity. The negative electron affinity of GaAs photocathodes is determined through Cs, and O activation is achieved. However, after activation, the maintenance of negative electron affinity is affected by many factors, such as the activation source, activation method, and gas atmosphere. To explore the factors that affect the stability of GaAs photocathodes in ultra-high vacuum systems, an activation and stability experiment was performed with a GaAs photocathode. The activation photocurrent curve and gas composition in a chamber were monitored. The experimental results show that in a high-vacuum system with vacuum degree less than 1×10−6 Pa, the stability of the GaAs photocathode was not directly affected by the degree of vacuum but by the gas composition in the chamber. Among these, H2O had the greatest impact on stability. The increase in the H2O partial pressure in the vacuum system rapidly destroyed the Cs and O activation layers of the GaAs photocathode and dramatically reduced the photoemission.
  • [1]
    Belghachi A, Helmaoui A, Cheknane A. High efficiency all-GaAs solar cell[J]. Progress in Photovoltaics: Research and Applications, 2010, 18(2): 79-82. DOI: 10.1002/pip.928
    [2]
    Mitsuno K, Masuzawa T, Hatanaka Y, et al. Activation process of GaAs NEA photocathode and its spectral sensitivity[C]//3rd International Conference on Nanotechnologies and Biomedical Engineering, 2016: 163-166.
    [3]
    LIU L, DIAO Y, XIA S. Impact of gas adsorption on the stability and electronic properties of negative electron affinity GaAs nanowire photocathodes[J]. Journal of Colloid and Interface Science, 2020, 572: 297-305. DOI: 10.1016/j.jcis.2020.03.100
    [4]
    Wada T, Nitta T, Nomura T, et al. Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes[J]. Japanese Journal of Applied Physics, 1990, 29(10R): 2087.
    [5]
    ZOU J, CHANG B, YANG Z, et al. Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes[J]. Journal of Applied Physics, 2009, 105(1): 013714. DOI: 10.1063/1.3063686
    [6]
    DIAO Y, LIU L, XIA S. Theoretical analysis and modeling of photoemission ability and photoelectric conversion characteristics of GaAs nanowire cathodes based on photon-enhanced thermionic emission[J]. Solar Energy, 2019, 194: 510-518. DOI: 10.1016/j.solener.2019.11.025
    [7]
    Chanlek N, Herbert J D, Jones R M, et al. The degradation of quantum efficiency in negative electron affinity GaAs photocathodes under gas exposure[J]. Journal of Physics D: Applied Physics, 2014, 47(5): 055110. DOI: 10.1088/0022-3727/47/5/055110
  • Related Articles

    [1]XIAO Nachuan, SUN Tuo, HU Liyun, ZHAO Yongquan, WANG Shuangbao, XU Zhimou, ZHANG Xueming. Design of Compact Athermalized Long-Wave Infrared Lens Set with Large Field of View[J]. Infrared Technology , 2024, 46(1): 20-26.
    [2]FENG Lijun, LI Xunniu, CHEN Jie, ZHOU Lingling, DONG Jiangtao, SUN Aiping, BAO Jianan. Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors[J]. Infrared Technology , 2022, 44(10): 1066-1072.
    [3]CHEN Xiao. Athermalization of Infrared Zoom Optical System with Large Relative Aperture[J]. Infrared Technology , 2021, 43(12): 1183-1187.
    [4]HE Xiangqing, LIAO Xiaojun, DUAN Yuan, ZHANG Haoye. Common Aperture and Athermalization Design of Compact Laser/Infrared Optical System[J]. Infrared Technology , 2020, 42(5): 461-467.
    [5]YANG Liangliang, SHEN Fahua, LIU Chenglin, TONG Qiaoying. Athermal Design of Infrared Dual-band Optical System with Double-layer Diffractive Optical Elements[J]. Infrared Technology , 2019, 41(8): 699-704.
    [6]Design of Long-wavelength Infrared Athermalization Lens for Large-array Detector[J]. Infrared Technology , 2018, 40(11): 1061-1064.
    [7]JIANG Bo, WU Yue-hao, DAI Shi-xun, NIE Qiu-hua, MU Rui, ZHANG Qin-yuan. Design of a Compact Dual-band Athermalized Infrared System[J]. Infrared Technology , 2015, (12): 999-1004.
    [8]LV Yin-huan, LEI Cun-dong, CUI Wei-xin. Design and Realization of Athermalizing Optical System for Long-wave Infrared Horizon Sensor[J]. Infrared Technology , 2011, 33(11): 651-654,658. DOI: 10.3969/j.issn.1001-8891.2011.11.007
    [9]CUI Li, ZHAO Xin-liang, LITong-hai, TIAN Hai-xia, WU Hai-qing. Athermalization of Uncooled Infrared Optical System Without Focusing Mechanism[J]. Infrared Technology , 2010, 32(4): 187-190. DOI: 10.3969/j.issn.1001-8891.2010.04.001
    [10]BAI Yun, YANG Jian-feng, MA Xiao-long, XUE Bin, RUAN Ping, TIAN Hai-xia, WANG Hong-wei, LIANG Shi-tong, LI Xiang-juan. Athermalization of Long-wavelength Infrared Optical System[J]. Infrared Technology , 2008, 30(10): 583-585. DOI: 10.3969/j.issn.1001-8891.2008.10.007

Catalog

    Article views (107) PDF downloads (41) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return