Citation: | WU Haoyu, GUO Xin, GAN Linyu, CHEN Peng, XU Zhifeng, LIU Hui, JIAO Gangcheng, ZHU Yufeng, REN Yutian. Influence of Chamber Gas Composition on the Stability of GaAs Photocathode[J]. Infrared Technology , 2022, 44(8): 824-827. |
[1] |
Belghachi A, Helmaoui A, Cheknane A. High efficiency all-GaAs solar cell[J]. Progress in Photovoltaics: Research and Applications, 2010, 18(2): 79-82. DOI: 10.1002/pip.928
|
[2] |
Mitsuno K, Masuzawa T, Hatanaka Y, et al. Activation process of GaAs NEA photocathode and its spectral sensitivity[C]//3rd International Conference on Nanotechnologies and Biomedical Engineering, 2016: 163-166.
|
[3] |
LIU L, DIAO Y, XIA S. Impact of gas adsorption on the stability and electronic properties of negative electron affinity GaAs nanowire photocathodes[J]. Journal of Colloid and Interface Science, 2020, 572: 297-305. DOI: 10.1016/j.jcis.2020.03.100
|
[4] |
Wada T, Nitta T, Nomura T, et al. Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes[J]. Japanese Journal of Applied Physics, 1990, 29(10R): 2087.
|
[5] |
ZOU J, CHANG B, YANG Z, et al. Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes[J]. Journal of Applied Physics, 2009, 105(1): 013714. DOI: 10.1063/1.3063686
|
[6] |
DIAO Y, LIU L, XIA S. Theoretical analysis and modeling of photoemission ability and photoelectric conversion characteristics of GaAs nanowire cathodes based on photon-enhanced thermionic emission[J]. Solar Energy, 2019, 194: 510-518. DOI: 10.1016/j.solener.2019.11.025
|
[7] |
Chanlek N, Herbert J D, Jones R M, et al. The degradation of quantum efficiency in negative electron affinity GaAs photocathodes under gas exposure[J]. Journal of Physics D: Applied Physics, 2014, 47(5): 055110. DOI: 10.1088/0022-3727/47/5/055110
|
[1] | XIAO Nachuan, SUN Tuo, HU Liyun, ZHAO Yongquan, WANG Shuangbao, XU Zhimou, ZHANG Xueming. Design of Compact Athermalized Long-Wave Infrared Lens Set with Large Field of View[J]. Infrared Technology , 2024, 46(1): 20-26. |
[2] | FENG Lijun, LI Xunniu, CHEN Jie, ZHOU Lingling, DONG Jiangtao, SUN Aiping, BAO Jianan. Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors[J]. Infrared Technology , 2022, 44(10): 1066-1072. |
[3] | CHEN Xiao. Athermalization of Infrared Zoom Optical System with Large Relative Aperture[J]. Infrared Technology , 2021, 43(12): 1183-1187. |
[4] | HE Xiangqing, LIAO Xiaojun, DUAN Yuan, ZHANG Haoye. Common Aperture and Athermalization Design of Compact Laser/Infrared Optical System[J]. Infrared Technology , 2020, 42(5): 461-467. |
[5] | YANG Liangliang, SHEN Fahua, LIU Chenglin, TONG Qiaoying. Athermal Design of Infrared Dual-band Optical System with Double-layer Diffractive Optical Elements[J]. Infrared Technology , 2019, 41(8): 699-704. |
[6] | Design of Long-wavelength Infrared Athermalization Lens for Large-array Detector[J]. Infrared Technology , 2018, 40(11): 1061-1064. |
[7] | JIANG Bo, WU Yue-hao, DAI Shi-xun, NIE Qiu-hua, MU Rui, ZHANG Qin-yuan. Design of a Compact Dual-band Athermalized Infrared System[J]. Infrared Technology , 2015, (12): 999-1004. |
[8] | LV Yin-huan, LEI Cun-dong, CUI Wei-xin. Design and Realization of Athermalizing Optical System for Long-wave Infrared Horizon Sensor[J]. Infrared Technology , 2011, 33(11): 651-654,658. DOI: 10.3969/j.issn.1001-8891.2011.11.007 |
[9] | CUI Li, ZHAO Xin-liang, LITong-hai, TIAN Hai-xia, WU Hai-qing. Athermalization of Uncooled Infrared Optical System Without Focusing Mechanism[J]. Infrared Technology , 2010, 32(4): 187-190. DOI: 10.3969/j.issn.1001-8891.2010.04.001 |
[10] | BAI Yun, YANG Jian-feng, MA Xiao-long, XUE Bin, RUAN Ping, TIAN Hai-xia, WANG Hong-wei, LIANG Shi-tong, LI Xiang-juan. Athermalization of Long-wavelength Infrared Optical System[J]. Infrared Technology , 2008, 30(10): 583-585. DOI: 10.3969/j.issn.1001-8891.2008.10.007 |