Citation: | HE Zifen, CAO Huizhu, ZHANG Yinhui, HUANG Junxuan, SHI Benjie, ZHU Shouye. Infrared Image Segmentation of Methane Leaks Incorporating Attentional Branching Features[J]. Infrared Technology , 2023, 45(4): 417-426. |
[1] |
朱亮, 高少华, 丁德武, 等. 光学气体成像技术在泄漏检测与维修中的应用研究[J]. 安全、健康和环境, 2014, 14(4): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SAFE201404004.htm
ZHU L, GAO S H, DING D W, et al. Study on the application of optical gas imaging technology in leak detection and repair[J]. Safety, Health and Environment, 2014, 14(4): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SAFE201404004.htm
|
[2] |
屈姣. 甲烷和煤尘爆炸特性实验研究[D]. 西安: 西安科技大学, 2015.
QU J. Experimental study on the explosion characteristics of methane and coal dust[D]. Xi'an: Xian University of Science and Technology, 2015.
|
[3] |
张旭, 金伟其, 李力, 等. 天然气泄漏被动式红外成像检测技术及系统性能评价研究进展[J]. 红外与激光工程, 2019, 48(S2): 53-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2019S2008.htm
ZHANG X, JIN W Q, LI L, et al. Research progress on passive infrared imaging detection technology and system performance evaluation for natural gas leakage[J]. Infrared and Laser Engineering, 2019, 48(S2): 53-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2019S2008.htm
|
[4] |
孟宗. 透射式光纤甲烷气体监测系统的研究[J]. 仪器仪表学报, 2005(S1): 49-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2005S1019.htm
MENG Z. Research on transmission type fiber optic methane gas monitoring system[J]. Journal of Instrumentation, 2005(S1): 49-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2005S1019.htm
|
[5] |
HU L, ZHENG C, ZHANG M, et al. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy[J]. Photoacoustics, 2020, 21: 100230.
|
[6] |
苑彬, 陈书立. 红外吸收光谱型城市路网尾气浓度检测传感器[J]. 电子器件, 2020, 43(2): 471-476. DOI: 10.3969/j.issn.1005-9490.2020.02.042
YUAN B, CHENG S L. Infrared absorption spectroscopy-based urban road network exhaust concentration detection sensor[J]. Electronic Devices, 2020, 43(2): 471-476. DOI: 10.3969/j.issn.1005-9490.2020.02.042
|
[7] |
迟晓铭, 肖安山, 朱亮, 等. 石化企业气体泄漏红外成像检测技术研究进展[J]. 安全、健康和环境, 2021, 21(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SAFE202102001.htm
CHI X Q, XIAO AN S, ZHU L, et al. Research progress of infrared imaging detection technology for gas leakage in petrochemical enterprises[J]. Safety, Health and Environment, 2021, 21(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SAFE202102001.htm
|
[8] |
洪少壮. 基于视觉的红外气体泄漏检测算法研究[D]. 大连: 大连海事大学, 2020.
HONG S Z. Research on Infrared Gas Leak Detection Algorithm Based on Vision[D]. Dalian: Dalian Maritime University, 2020.
|
[9] |
熊仕富. 红外热成像甲烷气体探测与识别系统关键技术研究[D]. 长春: 长春理工大学, 2018.
XIONG S F. Research on Key Technologies of Infrared Thermal Imaging Methane Gas Detection and Identification System[D]. Changchun: Changchun University of Science and Technology, 2018.
|
[10] |
王云云. 基于红外多光谱的有毒有害气体被动遥测方法研究[D]. 合肥: 中国科学技术大学, 2021.
WANG Y Y. Research on Passive Telemetry of Toxic and Hazardous Gases Based on Infrared Multispectrum[D]. Hefei: University of Science and Technology of China, 2021.
|
[11] |
方鹏, 郝宏运, 李腾飞, 等. 基于注意力机制和可变形卷积的鸡只图像实例分割提取[J]. 农业机械学报, 2021, 52(4): 257-265. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX202104027.htm
FANG P, HAO H Y, LI T F, et al. Extraction of chicken image instance segmentation based on attention mechanism and deformable convolution[J]. Journal of Agricultural Machinery, 2021, 52(4): 257-265. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX202104027.htm
|
[12] |
林云. 基于深度学习的有害气体红外图像处理研究[D]. 杭州: 浙江工商大学, 2018.
LIN Y. Research on infrared image processing of harmful gases based on deep learning[D]. Hangzhou: Zhejiang University of Technology and Industry, 2018.
|
[13] |
ZENG J, LIN Z, QI C, et al. An improved object detection method based on deep convolution neural network for smoke detection[C]// International Conference on Machine Learning and Cybernetics (ICMLC), 2018: 184-189.
|
[14] |
Bolya D, Zhou C, Xiao F, et al. Yolact: Real-time instance segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9157-9166.
|
[15] |
XIE S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500.
|
[16] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[J]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
|
[17] |
韩明, 王景芹, 王敬涛, 等. 级联特征融合孪生网络目标跟踪算法研究[J]. 计算机工程与应用, 2022, 58(6): 11. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202206021.htm
HAN M, WANG J J, WANG J T, et al. Research on cascaded feature fusion twin network target tracking algorithm[J]. Computer Engineering and Applications, 2022, 58(6): 11. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202206021.htm
|
[18] |
何自芬, 黄俊璇, 刘强, 等. 基于非对称混洗卷积神经网络的苹果叶部病害分割[J]. 农业机械学报, 2021, 52(8): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX202108022.htm
HE Z F, HUANG J X, LIU Q, et al. Apple leaf disease segmentation based on asymmetric mixed wash convolutional neural network[J]. Journal of Agricultural Machinery, 2021, 52(8): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX202108022.htm
|
[19] |
Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
|
[20] |
Roy A G, Navab N, Wachinger C. Concurrent spatial and channel 'squeeze & excitation' in fully convolutional networks[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI, 2018: 421-429.
|
[21] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
[22] |
WANG J, Tchapmi L P, Ravikumar A P, et al. Machine vision for natural gas methane emissions detection using an infrared camera[J]. Applied Energy, 2020, 257: 113998.
|
[23] |
LIU H, Soto R A R, Xiao F, et al. YOLACT edge: Real-time instance segmentation on the edge[C]//IEEE International Conference on Robotics and Automation (ICRA), 2021: 9579-9585.
|
[24] |
HE K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
1. |
黄坤琳,吴国周,徐维新,李利东,王海梅,李航,李自翔,司荆柯,刘洪宾,吴成娜. 呼伦贝尔东部农田区动态融雪过程及其影响因子. 干旱区研究. 2024(09): 1514-1526 .
![]() | |
2. |
黄林,李晖,康璇. 基于Freeman全极化分解的干雪识别指数模型构建. 厦门理工学院学报. 2023(05): 40-48 .
![]() |