ZHANG Kunjie. Research Progress and Trends of High Operating Temperature Infrared Detectors[J]. Infrared Technology , 2021, 43(8): 766-772.
Citation: ZHANG Kunjie. Research Progress and Trends of High Operating Temperature Infrared Detectors[J]. Infrared Technology , 2021, 43(8): 766-772.

Research Progress and Trends of High Operating Temperature Infrared Detectors

More Information
  • Received Date: August 02, 2020
  • Revised Date: September 01, 2020
  • Low SWaP (size, weight, and power) applications are typical features of thermal imaging systems based on HOT(high operating temperature) detectors. The system performance is comparable to that of a cooled infrared system, with reduced manufacturing costs. They have important application value and are promising prospects for high volume production. The structural features of barrier detectors are introduced, and the structures of the materials used for the barrier detectors and their impact on system performance are analyzed. Other technologies used for HOT detectors are also summarized. Finally, the current research progress on barrier infrared detectors is summarized. Additionally, several future research directions for HOT detector technologies are presented.
  • [1]
    Lior Shkedy, Maya Brumer, Philip Klipstein, et al. Development of 10 μm pitch XBn detector for low SWaP MWIR applications[C]//Proc. of SPIE, Infrared Technology and Applications XLⅡ, 2016, 9819: 98191D(doi: 10.1117/12.2220395).
    [2]
    Lutz H, Breiter R, Eich D, et al. High operating temperature IR-modules with small pitch for SWaP reduction and high performance applications[C]//Proc. of SPIE, Electro-Optical and Infrared Systems: Technology and Applications Ⅷ, 2011, 8185: 818504(doi: 10.1117/12.900347).
    [3]
    Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]//Proc. of SPIE, Infrared Technology and Applications XL, 2014, 9070: 90701D(doi: 10.1117/12.2050427).
    [4]
    Rogalski A, Martyniuk P. Mid-Wavelength infrared nBn for HOT detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2963-2969. DOI: 10.1007/s11664-014-3161-y
    [5]
    Philip Klipstein, Olga Klin, Steve Grossman, et al. "XBn" barrier detector for high operating temperatures[C]//Proc. of SPIE, Quantum Sensing and Nanophotonic Devices Ⅶ, 2010, 7608: 1-10.
    [6]
    Philip Klipstein, Olga Klin, Steve Grossman, et al. High operating temperature XBn-InAsSb bariode detectors[C]//Proc. of SPIE, Quantum Sensing and Nanophotonic Devices IX, 2012, 8268: 1-8.
    [7]
    Philip Klipstein. "XBn" Barrier photodetectors for high sensitivity and high operating temperature infrared sensors[C]//Proc. of SPIE, Infrared Technology and Applications XXXIV, 2008, 6940: 1-12.
    [8]
    Philip Klipstein, Olga Klin, Steve Grossman, et al. MWIR InAsSb XBn detectors for high operating temperatures[C]//Proc. of SPIE, Infrared Technology and Applications XXXVI, 2010, 7660: 76602Y(doi: 10.1117/12.849503).
    [9]
    David Z Ting, Alexander Soibel, Cory J Hill, et al. High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD)[C]//Proc. of SPIE, Infrared Technology and Applications XXXⅧ, 2012, 8353: 835332 (doi: 10.1117/12.920685).
    [10]
    David Z Ting, Alexander Soibel, Arezou Khoshakhlagh, et al. Carrier transport in nBn infrared detectors[C]// Proc. of SPIE, Infrared Remote Sensing and Instrumentation XXIV, 2016, 9973: 997304 (doi: 10.1117/12.2238853).
    [11]
    Kopytko M, Jóźwikowski K, Martyniuk P, et al. Status of HgCdTe barrier infrared detectors grown by MOCVD in military university of technology[J]. Journal of Electronic Materials, 2016, 45(9): 4563-4573. DOI: 10.1007/s11664-016-4702-3
    [12]
    Philip Klipstein, Olga Klin, Steve Grossman, et al. MWIR InAsSb XBnn detector (bariode) arrays operating at 150 K[C]//Proc. of SPIE, Infrared Technology and Applications XXXⅦ, 2011, 8012: 80122R(doi: 10.1117/12.883238).
    [13]
    邓功荣, 赵鹏, 袁俊, 等. 锑基高工作温度红外探测器研究进展[J]. 红外技术, 2017, 39(9): 780-784. http://hwjs.nvir.cn/article/id/hwjs201709002

    DENG Gongrong, ZHAO Peng, YUAN Jun, et al. Status of Sb-based HOT infrared detectors[J]. Infrared Technology, 2017, 39(9): 780-784. http://hwjs.nvir.cn/article/id/hwjs201709002
    [14]
    Philip Klipstein, Gross Y, Aronov D, et al. Low SWaP MWIR detector based on XBn Focal plane array Proc. of SP. IE[C]//Infrared Technology and Applications XXXIX, 2013, 87041: 1-12.
    [15]
    Philip Klipstein, Olga Klin, Steve Grossman, et al. XBn barrier photodetectors based on InAsSb with high operating temperatures[C]//Optical Engineering, 2011, 50(6): doi: 10.1117/ 1.3572149.
    [16]
    Amy W K, LIU Dmitri Lubyshev, QIU Yueming, et al. MBE growth of Sb-based bulk nBn infrared photodetector structures on 6-inch GaSb substrates[C]//Proc. of SPIE, Infrared Technology and Applications XLI, 2015, 9451: 94510T(doi: 10.1117/12.2178122).
    [17]
    Dmitri Lubyshev, Joel M Fastenau, QIU Yueming, et al. MBE growth of Sb-based nBn photodetectors on large diameter GaAs substrates[C]// Proc. of SPIE, Infrared Technology and Applications XXXIX, 2013, 8704: 870412(doi: 10.1117/12.2019039).
    [18]
    Yoram Karni, Eran Avnon, Michael Ben Ezra, et al. Large format 15μm pitch XBn detector[C]//Proc. of SPIE, Infrared Technology and Applications XL, 2014, 9070: 90701F(doi: 10.1117/12.2049691).
    [19]
    Gershon G, Avnon E, Brumer M, et al. 10μm pitch family of InSb and XBn detectors for MWIR imaging[C]//Proc. of SPIE, Infrared Technology and Applications XLⅢ, 2017, 10177: 101771I(doi: 10.1117/12.2261703).
    [20]
    [21]
    Müller R, Gramich V, Wauro M, et al. High operating temperature InAs/GaSb type-Ⅱ superlattice detectors on GaAs substrate for the long wavelength infrared[J]. Infrared Physics and Technology, 2019, 96: 141-144. DOI: 10.1016/j.infrared.2018.10.019
    [22]
    Philip Klipstein, Avnon E, Benny Y, et al. InAs/GaSb Type Ⅱ superlattice barrier devices with a low dark current and a high-quantum efficiency[C]//Proc. of SPIE, Infrared Technology and Applications XL, 2014, 9070: 90700U(doi: 10.1117/12.2049825).
    [23]
    Martyniuk P, Hackiewicz K, Rutkowski J, et al. Ultimate performance of IB CID T2SLs InAs/GaSb and InAs/InAsSb longwave photodetectors for high operating temperature condition[J]. Journal of Electronic Materials, 2019, 48(10): 6093-6098. DOI: 10.1007/s11664-019-07398-x
    [24]
    Manijeh Razeghi. Sb-based 3rd generation imagers at center for quantum devices[C]//Proc. SPIE, Infrared Technology and Applications XLVI, 2020: doi: 10.1117/12.2564813.
    [25]
    周立庆, 宁提, 张敏, 等. 10 μm像元间距1024×1024中波红外探测器研制进展[J]. 激光与红外, 2019, 49(8): 915-920. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908002.htm

    ZHOU Liqing, NING Ti, ZHANG Min, et al. Developments of 10 μm pixel pitch 1024×1024 MW infrared detectors[J]. Laser and Infrared, 2019, 49(8): 915-920. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908002.htm
    [26]
    张坤杰. 国外三代红外探测器制冷机的研究现状[J]. 云光技术, 2020, 52(1): 28-37.

    ZHANG Kunjie. The research status of the third generation infrared detectors in foreign countries[J]. YUN GUANG JI SHU, 2020, 52(1): 28-37.
    [27]
    [28]
    AIM Infrarot-Module GmbH. HiPIR-1280M-MCT MWIR 1280×1024 15 μm Pitch IDCA[M/OL][2019-03-09]. http://www.aim-ir.com/fileadmin/files/Data_Sheets_Security/Modules/02_MWIR_IDCA/HiPIR1280M/2018_AIM_datenblatt_A4_HiPIR-1280M_engl.pdf.
    [29]
    AIM Infrarot-Module GmbH. HiPIR-Engine HOT MCT 1024×768 10μm PITCH IR ENGINE[M/OL][2019-03-09]. http://www.Aim-ir.com/fileadmin/files/Data_Sheets_Security/Modules/01_HotCube/2018_AIM_datenblatt_A4_HOT-MCT-1024_engl.pdf.
  • Related Articles

    [1]BAI Xiaofeng, ZHANG Lei, YAN Shijun, QIAN Yunsheng, ZHANG Qin, SU Yue, CHENG Hongchang, CHENG Wei, LI Qi. Measurement of Signal to Noise Ratio of UV Image Intensifier Assembly[J]. Infrared Technology , 2024, 46(11): 1302-1307.
    [2]WANG Jialong, LIU Yanzhen, YANG Xiaokun, HUANG Fuyun, YANG Chaowei, LI Xiongjun. Surface Treatment Method of Near-Stoichiometric Ratio HgCdTe Film[J]. Infrared Technology , 2024, 46(6): 646-653.
    [3]CHANG Shanshan, MA Yunfeng, LIAO Lifen, ZHAO Peng, CHENG Wang, FAN Zhongwei. Measurement of Extinction Ratio of Brewster Angle Polarizer Based on Air Gap Prism[J]. Infrared Technology , 2019, 41(9): 882-886.
    [4]SANG Xueyi, JI Honghu, WANG Ding. Influence of Length-Diameter Ratio and Offset-Diameter Ratio on Performance of Serpentine 2-D Nozzle[J]. Infrared Technology , 2019, 41(5): 443-449.
    [5]Image Fusion Algorithm for Visual and Infrared Image Based on Local Energy Ratio[J]. Infrared Technology , 2008, 30(4): 221-224. DOI: 10.3969/j.issn.1001-8891.2008.04.010
    [6]CHEN Wei-zhen, ZHANG Chun-hua, ZHOU Xiao-dong. A Study on Luminosity Features and Signal Noise Ratio of Space Target[J]. Infrared Technology , 2007, 29(12): 716-719. DOI: 10.3969/j.issn.1001-8891.2007.12.009
    [7]LI Hui, QIAN Yun-sheng, CHANG Ben-kang, LIU Lei, XIA Yang, LI Shi-yi. The Research of K Factor for Signal-to-noise Ratio of LLLIntensifier[J]. Infrared Technology , 2007, 29(8): 488-490. DOI: 10.3969/j.issn.1001-8891.2007.08.015
    [8]PU Li, JIN Wei-qi, LIU Yu-shu, SU Bing-hua, ZHANG Nan. A Study of Wavelet Bi-cubic Ratio Interpolation Algorithm[J]. Infrared Technology , 2006, 28(8): 453-455. DOI: 10.3969/j.issn.1001-8891.2006.08.005
    [9]CHEN Xi, TONG Ming-ming, XING Ji-chuan. A Research on Testing of Optic-crystal Extinction-ratio[J]. Infrared Technology , 2006, 28(7): 388-390. DOI: 10.3969/j.issn.1001-8891.2006.07.004
    [10]Transmission of Two Wave Bands Infrared Radiation Ratio of Aerial Object in the Atmosphere[J]. Infrared Technology , 2003, 25(1): 40-43. DOI: 10.3969/j.issn.1001-8891.2003.01.009
  • Cited by

    Periodical cited type(5)

    1. 杨志勇,王晓伟,杨雨豪,张明娣,张志伟. 分时型长波红外偏振成像系统图像配准研究. 火箭军工程大学学报. 2024(05): 44-52 .
    2. 杨天敏,王晓燕. 偏振图像融合的人脸图像增强研究. 激光杂志. 2023(03): 148-152 .
    3. 宿德志,李慧,刘亮,张纪磊. 分时偏振成像系统旋转角度误差校正. 舰船电子工程. 2023(09): 36-41 .
    4. 马一哲,王世勇,雷腾,李范鸣. 基于连续旋转的准实时偏振探测系统成像模型与误差分析(特邀). 光电技术应用. 2022(05): 82-87+102 .
    5. 张杨,聂亮,陈超,王天澳,史少聪. 基于偏振成像均衡化的目标对比度提升研究. 应用激光. 2022(12): 137-146 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return