Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
SHI Wenling, LIAO Yipeng, XU Zhimeng, YAN Xin, ZHU Kunhua. Foam Flow Rate Detection Based on Infrared Target Segmentation and SURF Matching in NSST Domain[J]. Infrared Technology , 2023, 45(5): 463-473.
Citation: SHI Wenling, LIAO Yipeng, XU Zhimeng, YAN Xin, ZHU Kunhua. Foam Flow Rate Detection Based on Infrared Target Segmentation and SURF Matching in NSST Domain[J]. Infrared Technology , 2023, 45(5): 463-473.

Foam Flow Rate Detection Based on Infrared Target Segmentation and SURF Matching in NSST Domain

  • Received Date: 2022-05-27
  • Rev Recd Date: 2022-06-24
  • Publish Date: 2023-05-20
  • In order to reduce the influence of changes such as flotation bubble merging and breaking on the foam surface flow feature extraction, a foam surface flow rate detection method based on infrared target segmentation and improved SURF matching in NSST domain is proposed. First, two adjacent froth infrared images are decomposed through NSST, and boundary, brightness, and saliency constraint terms of the graph cut energy function are constructed in the multi-scale domain to realize the segmentation of the merged and broken bubbles. Then, SURF feature point detection are performed on the segmented background region. The main direction of the feature point is determined by statistical the scale correlation coefficients in the sector area, and the multi-directional high-frequency coefficients in the neighborhood of the feature point are used to construct the feature descriptors. Finally, feature points are matched for two adjacent froth infrared images, and the magnitude, direction, acceleration and disorder of foam flow velocity are calculated based on the matching results. The experimental results show that the method in this paper can effectively segment the merged and broken bubbles with high segmentation accuracy, improve the matching accuracy of SURF algorithm, reduce the impact of the bubbles merging and breaking on the flow velocity detection. Compared with the existing methods, the method in this paper improve the detection accuracy and efficiency, which can accurately characterize the flow characteristics of the foam surface under different working conditions and lay the foundation for the subsequent working condition identification.
  • loading
  • [1]
    Fonseca R R, Franco I C, Thompson J P, et al. Turbidity control on dissolved air flotation process using fuzzy logic[J]. Water Science and Technology, 2018, 78(12): 2586-2596. doi:  10.2166/wst.2019.015
    [2]
    XIE Y, WU J, XU D, et al. Reagent addition control for stibium rougher flotation based on sensitive froth image features[J]. IEEE Transactions on Industrial Electronics, 2016, 64(5): 4199-4206. http://www.onacademic.com/detail/journal_1000039773149010_f4aa.html
    [3]
    TAN J, LIANG L, PENG Y, et al. The concentrate ash content analysis of coal flotation based on froth images[J]. Minerals Engineering, 2016, 92: 9-20. doi:  10.1016/j.mineng.2016.02.006
    [4]
    ZHANG J, TANG Z, LIU J, et al. Recognition of flotation working conditions through froth image statistical modeling for performance monitoring[J]. Minerals Engineering, 2016, 86: 116-129. doi:  10.1016/j.mineng.2015.12.008
    [5]
    陈良琴, 王卫星. 基于气泡跟踪与相位相关的浮选表面气泡平移运动估计[J]. 四川大学学报: 工程科学版, 2016, 48(5): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201605020.htm

    CHEN L Q, WANG W X. Flotation surface bubble displacement motion estimation based on bubble tracking and phase correlation[J]. Journal of Sichuan University: Engineering Science Edition, 2016, 48(5): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201605020.htm
    [6]
    Kaartinen J, Hätönen J, Hyötyniemi H, et al. Machine-vision-based control of zinc flotation—a case study[J]. Control Engineering Practice, 2006, 14(12): 1455-1466. doi:  10.1016/j.conengprac.2005.12.004
    [7]
    Nakhaei F, Irannajad M, Mohammadnejad S. Column flotation performance prediction: PCA, ANN and image analysis-based approaches[J]. Physicochemical Problems of Mineral Processing, 2019, 55(5): 1298-1310. http://www.xueshufan.com/publication/2974543226
    [8]
    WANG Y, SUN B, ZHANG R, et al. Sulfur flotation performance recognition based on hierarchical classification of local dynamic and static froth features[J]. IEEE Access, 2018, 6: 14019-14029. doi:  10.1109/ACCESS.2018.2805265
    [9]
    廖一鹏, 陈诗媛, 杨洁洁. NSST域改进ORB的泡沫流动特征提取及加药状态识别. [J]. 光学精密工程, 2020, 28(12): 2684-2699. doi:  10.37188/OPE.20202812.2684

    LIAO Y P, CHEN S Y, YANG J J, et al. Dosing status identification and froth flow feature extraction based on improved ORB in NSST domain[J]. Optics and Precision Engineering, 2020, 28(12): 2684-2699. doi:  10.37188/OPE.20202812.2684
    [10]
    BAY H, TUYTELAARS T, VAN GOOL L. Surf: Speeded up robust features[C]//European Conference on Computer Vision, 2006: 404-417.
    [11]
    SINGH S, ANAND R S, GUPTA D. CT and MR image information fusion scheme using a cascaded framework in ripplet and NSST domain[J]. IET Image Processing, 2018, 12(5): 696-707. doi:  10.1049/iet-ipr.2017.0214
    [12]
    廖一鹏, 王卫星, 付华栋, 等. 结合分数阶微分的浮选泡沫图像NSCT多尺度增强[J]. 华南理工大学学报: 自然科学版, 2018, 46(3): 92-102. doi:  10.3969/j.issn.1000-565X.2018.03.014

    LIAO Y P, WANG W X, FU H D, et al. Flotation foam image NSCT multi-scale enhancement with fractional differential[J]. Journal of South China University of Technology: Natural Science Edition, 2018, 46(3): 92-102. doi:  10.3969/j.issn.1000-565X.2018.03.014
    [13]
    PENG Z, QU S, LI Q. Interactive image segmentation using geodesic appearance overlap graph cut[J]. Signal Processing: Image Communication, 2019, 78: 159-170. doi:  10.1016/j.image.2019.06.012
    [14]
    廖苗, 刘毅志, 欧阳军林, 等. 基于非线性增强和图割的CT序列肝脏肿瘤自动分割[J]. 计算机辅助设计与图形学学报, 2019, 31(6): 1030-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201906019.htm

    LIAO M, LIU Y Z, OUYANG J L, et al. Automatic segmentation of liver tumor in CT volumes using nonlinear enhancement and graph cuts [J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(6): 1030-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201906019.htm
    [15]
    林剑萍, 廖一鹏. 结合分数阶显著性检测及量子烟花算法的NSST域图像融合[J]. 光学精密工程, 2021, 29(6): 1406-1419. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202106021.htm

    LIN J P, LIAO Y P. A novel image fusion method with fractional saliency detection and QFWA in NSST[J]. Optics and Precision Engineering, 2021, 29(6): 1406-1419. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202106021.htm
    [16]
    袁丽英, 刘佳, 王飞越. 基于SURF的图像配准改进算法[J]. 探测与控制学报, 2020, 42(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYX202002014.htm

    YUAN L Y, LIU J, WANG F Y. An improved algorithm of SURF image registration[J]. Journal of Detection & Control, 2020, 42(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYX202002014.htm
    [17]
    SONG J L, YANG J H, LIU F J, et al. High temperature strain measurement method by combining digital image correlation of laser speckle and improved RANSAC smoothing algorithm[J]. Optics and Lasers in Engineering, 2018, 111: 8-18. doi:  10.1016/j.optlaseng.2018.07.012
    [18]
    邵磊, 张一鸣, 李季, 等. 基于改进的两维Otsu管道红外图像高温区域分割研究[J]. 光谱学与光谱分析, 2019, 39(5): 1637-1642. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201905055.htm

    SHAO L, ZHANG Y M, LI J, et al. Research on high temperature region segmentation of infrared pipeline image based on improved two-dimensional-Otsu[J]. Spectroscopy and Spectral Analysis, 2019, 39(5): 1637-1642. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201905055.htm
    [19]
    BI H, TANG H, YANG G Y, et al. Accurate image segmentation using Gaussian mixture model with saliency map[J]. Pattern Analysis and Applications, 2018, 21(3): 869-878. doi:  10.1007/s10044-017-0672-1
    [20]
    牛燕雄, 陈梦琪, 张贺. 基于尺度不变特征变换的快速景象匹配方法[J]. 电子与信息学报, 2019, 41(3): 626-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201903017.htm

    NIU Y X, CHEN M Q, ZHANG H. Fast scene matching method based on scale invariant feature transform[J]. Journal of Electronics & Information Technology, 2019, 41(3): 626-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201903017.htm
    [21]
    罗久飞, 邱广, 张毅, 等. 基于自适应双阈值的SURF双目视觉匹配算法研究[J]. 仪器仪表学报, 2020, 41(3): 240-247. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202003026.htm

    LUO J F, QIU G, ZHANG Y, et al. Research on speeded up robust feature binocular vision matching algorithm based on adaptive double threshold[J]. Chinese Journal of Scientific Instrument, 2020, 41(3): 240-247. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202003026.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (93) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return