LI Shouye, HU Maohai, LI Tianran, DUAN Zheyi. Epipolar Rectification Based on Singular Value Decomposition of Camera Translation Matrix[J]. Infrared Technology , 2024, 46(2): 155-161.
Citation: LI Shouye, HU Maohai, LI Tianran, DUAN Zheyi. Epipolar Rectification Based on Singular Value Decomposition of Camera Translation Matrix[J]. Infrared Technology , 2024, 46(2): 155-161.

Epipolar Rectification Based on Singular Value Decomposition of Camera Translation Matrix

More Information
  • Received Date: February 27, 2023
  • Revised Date: March 27, 2023
  • Epipolar rectification is a projection transformation method for the original image pair of a binocular camera such that the corresponding polar lines of the corrected image are on the same horizontal line, no vertical parallax occurs, and stereo-matching is optimized as a one-dimensional search problem. A polar correction method based on a binocular camera translation matrix is proposed to address the shortcomings of current polar correction methods. First, the new corrected rotation matrix is derived using the translation matrix of singular value decomposition. Second, a new camera internal reference matrix is established based on the image relationship before and after correction to complete the polar correction. The proposed method was used to verify multiple groups of binocular images in different scenes in the SYNTIM database. The experimental results show that the average correction error is within 0.6 pixels. The image produces minimal distortion, and the average deviation is approximately 2.4°. The average operation time is 0.2302 s. With its application value, this method fully satisfies polar correction requirements, solves the error, and improves the tedious calculation process caused by the mechanical deviation of the camera during the stereo matching of binocular cameras.
  • [1]
    王学, 周红旭, 张雷, 等. 基于近红外双目立体视觉的悬臂式掘进机定位研究[J/OL]. 工矿自动化: 1-11[2022-09-15]. DOI: 10.13272/j.issn.1671-251x.17896.

    WANG X, ZHOU H X, ZHANG L, et al. Research on cantilever roadheader positioning based on near-infrared binocular stereo vision[J/OL]. [2022-09-15]. Mine Automation, DOI: 10.13272/j.issn.1671-251x.17896.
    [2]
    江荣, 朱攀, 周兴林, 等. 基于双目视觉算法的路面三维纹理信息获取[J]. 激光与光电子学进展, 2022, 59(14): 284-292.

    JIANG R, ZHU P, ZHOU X L, et al. Three-dimensional pavement texture information acquisition based on binocular vision algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(14): 284-292.
    [3]
    舒方林, 张海波, 曹文冠. 基于立体视觉的交叉路口对向车辆运动状态估计[J]. 计算机与数字工程, 2022, 50(5): 1029-1034.

    SHU F L, ZHANG H B, CAO W G. Estimating the motion state of oncoming vehicle based on stereo vision at intersection[J]. Computer & Digital Engineering, 2022, 50(5): 1029-1034.
    [4]
    冉舒文, 刘显明, 雷小华, 等. 基于双目视觉的抬头显示虚像三维形貌测量[J/OL]. [2022-10-26]. 光学学报, http://kns.cnki.net/kcms/detail/31.1252.O4.20220714.1900.522.html.

    RAN S W, LIU X M, LEI X H, et al. Head-up display virtural image 3D topography measurement based on binocular vision[J/OL]. [2022-10-26]. Acta Optica Sinica, http://kns.cnki.net/kcms/detail/31.1252.O4.20220714.1900.522.html
    [5]
    Bouguet J Y. Matlab Camera Calibration Toolbox[EB/OL]. 2000, http://www.vision.caltech.edu\bouguetj\calib_doc.
    [6]
    Andrea Fusiello, Luca Irsara. Quasi-Euclidean epipolar rectification of uncalibrated images[J]. Machine Vision and Applications, 2011, 22(4): 663-670. DOI: 10.1007/s00138-010-0270-3
    [7]
    Richard I Hartley. In defense of the eight-point algorithm[J]. IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19(6): 580-593. DOI: 10.1109/34.601246
    [8]
    Hartley R, Zisserman A. Multiple View Geometry in Computer Vision[M]. Cambridge: Cambridge University Press, 2000.
    [9]
    Richard I Hartley. Theory and practice of projective rectification[J]. International Journal of Computer Vision, 1999, 35(2): 115-127. DOI: 10.1023/A:1008115206617
    [10]
    林国余, 张为公. 一种无需基础矩阵的鲁棒性极线校正算法[J]. 中国图象图形学报, 2006(2): 203-209.

    LIN G Y, ZHANG W G. An Effective robust rectification method for stereo vision[J]. Journal of Image and Graphics, 2006(2): 203-209.
    [11]
    John Mallon, Paul F Whelan. Projective rectification from the fundamental matrix[J]. Image and Vision Computing, 2005, 23(7): 643-650. DOI: 10.1016/j.imavis.2005.03.002
    [12]
    WU Wenhuan, ZHU Hong, ZHANG Qian. Epipolar rectification by singular value decomposition of essential matrix[J]. Multimedia Tools Appl., 2018, 77(12): 15747-15771. DOI: 10.1007/s11042-017-5149-0
    [13]
    Martin A Fischler, Robert C Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Commun. ACM, 1981, 24(6): 381-395. DOI: 10.1145/358669.358692
    [14]
    Hyunsuk Ko, Han Suk Shim, Ouk Choi, et al. Robust uncalibrated stereo Rectification with constrained geometric distortions (USR-CGD)[J]. Image and Vision Computing, 2017, 60: 98-114. DOI: 10.1016/j.imavis.2017.01.001
  • Related Articles

    [1]LIU Yunfeng, ZHAO Hongshan, YANG Jinbiao, HAN Jinfeng, LIU Bingcong. Super Resolution Method for Power Equipment Infrared Imaging Based on Gradient Norm-ratio Prior[J]. Infrared Technology , 2023, 45(1): 40-48.
    [2]CHEN Tao, LI Weizhong, LIU Yanlei, WANG Fei, JIANG Chenghang, ZHOU Hong. Feasibility Analysis of On-Line Infrared Detection of Incomplete Penetration Defect in Metal Pipe Welded Joint[J]. Infrared Technology , 2019, 41(12): 1146-1150.
    [3]WANG Dan, CHEN Liang. Super-resolution Reconstruction of Infrared Images in Night Environments Based on Deep-learning[J]. Infrared Technology , 2019, 41(10): 963-969.
    [4]LU Heyang, SU Shengjun, YUAN Minghui, SHI Weibin. Super-resolution Reconstruction of Terahertz Images[J]. Infrared Technology , 2019, 41(1): 59-63.
    [5]A Study on Rapid Image Super-resolution[J]. Infrared Technology , 2018, 40(3): 269-274.
    [6]YUE Da-hao, LI Xiao-li, ZHANG Hao-jun, LI Ye-shu, FENG Li-chun, WU Nai-ming. IR Thermography Inspection of Wind Turbine Blades[J]. Infrared Technology , 2011, 33(10): 614-617. DOI: 10.3969/j.issn.1001-8891.2011.10.013
    [7]FAN Chao, SUN Ning-ning, XIA Xu. Super-resolution Reconstruction Based on Image Sequences[J]. Infrared Technology , 2010, 32(5): 279-282. DOI: 10.3969/j.issn.1001-8891.2010.05.007
    [8]ZHOU Jian-long, CHENG Xue-qun, HU Yang, LI Xiao-gang. Damage Inspection and Evaluation of Industrial Furnace Wall Lining with Infrared Thermal Imager[J]. Infrared Technology , 2008, 30(10): 595-598. DOI: 10.3969/j.issn.1001-8891.2008.10.010
    [9]XU Hong-cai, XIANG Jian-yong, PAN Hao. An Improved POCS Algorithm for Super-resolution Image Reconstruction[J]. Infrared Technology , 2005, 27(6): 477-480. DOI: 10.3969/j.issn.1001-8891.2005.06.010
    [10]Damage Inspection of Flue Lining with Infrared Thermovision[J]. Infrared Technology , 2002, 24(1): 60-62. DOI: 10.3969/j.issn.1001-8891.2002.01.016
  • Cited by

    Periodical cited type(3)

    1. 关晓丹,郑东平,肖成. 基于全卷积网络的复杂背景红外弱小目标检测研究. 激光杂志. 2024(04): 254-258 .
    2. 余云霞,李毅鹏,陈姝敏. 基于锚框的远距离多尺度红外目标跟踪技术. 激光与红外. 2024(10): 1594-1599 .
    3. 孟祥瑞,李成良,文继权. 基于局部梯度的红外线列扫描图像小目标检测. 激光杂志. 2023(10): 52-56 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return