Citation: | DING Xiwen, CHENG Hongchang, YUAN Yuan, ZHANG Ruoyu, YANG Shuning, YANG Ye, DANG Xiaogang. Research Status of Local Defect Detection Technology of Ultraviolet Image Intensifier Field of View[J]. Infrared Technology , 2024, 46(2): 129-137. |
[1] |
石峰, 程宏昌, 闫磊, 等. 紫外探测技术[M]. 北京: 国防工业出版社, 2017.
SHI Feng, CHENG Hongchang, YAN Lei, et al. Ultraviolet Detection Technology[M]. Beijing: National Defense Industry Press, 2017.
|
[2] |
林祖伦, 王小菊. 光电成像导论[M]. 北京: 国防工业出版社, 2016.
LIN Zulun, WANG Xiaoju. Introduction to Photoelectric Imaging[M]. Beijing: National Defense Industry Press, 2016.
|
[3] |
汪贵华. 光电子器件[M]. 3版: 北京: 国防工业出版社, 2020.
WANG Guihua. Optoelectronic Devices[M]. 3rd edition: Beijing: National Defense Industry Press, 2020.
|
[4] |
许正光, 王霞, 王吉晖, 等. 像增强器视场缺陷检测方法研究[J]. 应用光学, 2005(3): 12-15. DOI: 10.3969/j.issn.1002-2082.2005.03.004
XU Zhengguang, WANG Xia, WANG Jihui, et al. Research of an approach to detect field defects of image intensifier[J]. Application Optics, 2005(3): 12-15. DOI: 10.3969/j.issn.1002-2082.2005.03.004
|
[5] |
王吉晖, 金伟其, 王霞, 等. 基于数学形态学的像增强器缺陷的图像检测方法[J]. 光学技术, 2005(3): 463-464, 467.
WANG Jihui, JIN Weiqi, WANG Xia, et al. Flaw inspection method for image tube based on image processing[J]. Optical Technology, 2005(3): 463-464, 467.
|
[6] |
赵清波. 宽光谱像增强器辐射增益和视场缺陷测试技术研究[D]. 南京: 南京理工大学, 2008.
ZHAO Qingbo. Research on Radiation Gain and Field Defect Test Technology of Wide Spectrum Image Intensifier[D]. Nanjing: Nanjing University of Science and Technology, 2008.
|
[7] |
FU Rongguo, WEI Yifang, YANG Qi, et al. The analysis of the defects of the view field of the UV image intensifier[C]//Sensors and Systems for Space Applications X of SPIE, 2017, 10196: 19-26.
|
[8] |
杨琦. 紫外像增强器视场缺陷检测技术研究[D]. 南京: 南京理工大学, 2011.
YANG Qi. Research on Defect Detection Technology of Ultraviolet Image Intensifier[D]. Nanjing: Nanjing University of Science and Technology, 2011.
|
[9] |
ZHOU B, LIU B, WU D. Research on testing field flaws of image intensifier based on spatio-temporal SNR[C]//5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Detector, Imager, Display, and Energy Conversion Technology of SPIE, 2010, 7658: 691-695.
|
[10] |
孙文政. 基于深度学习和机器视觉的手机屏幕瑕疵检测方法研究[D]. 济南: 山东大学, 2019.
SUN Wenzheng. Research on Mobile Phone Screen Defect Detection Method Based on Deep Learning and Machine Vision[D]. Jinan: Shandong University, 2019.
|
[11] |
汤勃, 孔建益, 伍世虔. 机器视觉表面缺陷检测综述[J]. 中国图象图形学报, 2017, 22(12): 1640-1663.
TANG Bo, KONG Jianyi, WU Shiqian. Review of machine vision surface defect detection[J]. Chinese Journal of Image and Graphics, 2017, 22(12): 1640-1663.
|
[12] |
张涛, 刘玉婷, 杨亚宁, 等. 基于机器视觉的表面缺陷检测研究综述[J]. 科学技术与工程, 2020, 20(35): 14366-14376. DOI: 10.3969/j.issn.1671-1815.2020.35.004
ZHANG Tao, LIU Yuting, YANG Yaning, et al. Review of surface defect detection based on machine vision[J]. Science, Technology and Engineering, 2020, 20(35): 14366-14376. DOI: 10.3969/j.issn.1671-1815.2020.35.004
|
[13] |
KE Wang, WANG Huiqin, YUE Shu, et al. Banknote image defect recognition method based on convolution neural network[J]. International Journal of Security and Its Applications, 2016, 10(6): 269-280. DOI: 10.14257/ijsia.2016.10.6.26
|
[14] |
顾佳晨, 高雷, 刘路硌. 基于深度学习的目标检测算法在冷轧表面缺陷检测中的应用[J]. 冶金自动化, 2019, 43(6): 19-22.
GU Jiachen, GAO Lei, LIU Luke. Application of object detection algorithm based on deep learning for inspection of surface defect of cold rolled strips[J]. Metallurgical Automation, 2019, 43(6): 19-22.
|
[15] |
景军锋, 刘娆. 基于卷积神经网络的织物表面缺陷分类方法[J]. 测控技术, 2018, 37(9): 20-25.
JING Junfeng, LIU Rao. Classification method of fabric surface defects based on convolution neural network[J]. Measurement and Control Technology, 2018, 37(9): 20-25.
|
[16] |
Deitsch S, Christlein V, Berger S, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy, 2019, 185: 455-468. DOI: 10.1016/j.solener.2019.02.067
|
[17] |
王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 859-867.
WANG Sen, WU Xing, ZHANG Yinhui, et al. Image crack detection with fully convolutional network based on deep learning[J]. Journal of Computer Aided Design and Graphics, 2018, 30(5): 859-867.
|
[18] |
DUNG C V. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction, 2019, 99: 52-58. DOI: 10.1016/j.autcon.2018.11.028
|
[19] |
LIU Y, YANG Y, WANG C, et al. Research on surface defect detection based on semantic segmentation[C]//Advanced Science and Industry Research Center Proceedings of 2019 International Conference on Artificial Intelligence, Control and Automation Engineering(AICAE 2019), 2019: 416-420.
|
[20] |
DONG Y, WANG J, WANG Z, et al. A deep-learning-based multiple defect detection method for tunnel lining damages[J]. IEEE Access, 2019, 7: 182643-182657. DOI: 10.1109/ACCESS.2019.2931074
|
[21] |
TIAN H, LI F. Autoencoder-based fabric defect detection with cross-patch similarity[C]//16th International Conference on Machine Vision Applications (MVA) of IEEE, 2019: 1-6.
|
[22] |
WEI Y H, NI Y Q. Variational autoencoder-based approach for rail defect identification[C]//12th International Workshop on Structural Health Monitoring: Enabling Intelligent Life-Cycle Health Management for Industry Internet of Things (IIOT), 2019: 2818-2824.
|
[23] |
DI H, KE X, PENG Z, et al. Surface defect classification of steels with a new semi-supervised learning method[J]. Optics and Lasers in Engineering, 2019, 117: 40-48. DOI: 10.1016/j.optlaseng.2019.01.011
|
[24] |
黄英来, 艾昕. 改进残差网络在玉米叶片病害图像的分类研究[J]. 计算机工程与应用, 2021, 57(23): 7.
HUANG Yinglai, AI Xin. Research on classification of corn leaf disease image by improved residual network[J]. Computer Engineering and Application, 2021, 57(23): 7.
|
[25] |
孙鹏翔, 毕利, 王俊杰. 基于改进深度残差网络的光伏板积灰程度识别[J]. 计算机应用, 2022, 42(12): 3733-3739.
SUN Pengxiang, BI Li, WANG Junjie. Dust accumulation degree recognition of photovoltaic panel based on improved deep residual network[J]. Computer Application, 2022, 42(12): 3733-3739.
|
[26] |
李馥颖, 杨大为, 黄海. 基于改进深度置信网络的木板表面缺陷检测模型[J]. 南京理工大学学报, 2022, 46(6): 728-734.
LI Fuying, YANG Dawei, HUANG Hai. Improved deep belief network based detection model for wood surface defects[J]. Journal of Nanjing University of Science and Technology, 2022, 46(6): 728-734.
|
[27] |
黄振宁, 赵永贵, 许志亮, 等. 基于判别式深度置信网络的智能电缆隧道缺陷检测技术研究[J]. 电子设计工程, 2022, 30(20): 103-107.
HUANG Zhenning, ZHAO Yonggui, XU Zhiliang, et al. Fault detection technology for smart cable tunnel based on discriminant deep belief network[J]. Electronic Design Engineering, 2022, 30(20): 103-107.
|
[28] |
李文俊, 陈斌, 李建明, 等. 基于深度神经网络的表面划痕识别方法[J]. 计算机应用, 2019, 39(7): 2103-2108.
LI Wenjun, CHEN Bin, LI Jianming, et al. Surface scratch recognition method based on deep neural network[J]. Computer Application, 2019, 39(7): 2103-2108.
|
[29] |
LEI J, GAO X, FENG Z, et al. Scale insensitive and focus driven mobile screen defect detection in industry[J]. Neurocomputing, 2018, 294: 72-81. DOI: 10.1016/j.neucom.2018.03.013
|
[1] | LIU Yunfeng, ZHAO Hongshan, YANG Jinbiao, HAN Jinfeng, LIU Bingcong. Super Resolution Method for Power Equipment Infrared Imaging Based on Gradient Norm-ratio Prior[J]. Infrared Technology , 2023, 45(1): 40-48. |
[2] | CHEN Tao, LI Weizhong, LIU Yanlei, WANG Fei, JIANG Chenghang, ZHOU Hong. Feasibility Analysis of On-Line Infrared Detection of Incomplete Penetration Defect in Metal Pipe Welded Joint[J]. Infrared Technology , 2019, 41(12): 1146-1150. |
[3] | WANG Dan, CHEN Liang. Super-resolution Reconstruction of Infrared Images in Night Environments Based on Deep-learning[J]. Infrared Technology , 2019, 41(10): 963-969. |
[4] | LU Heyang, SU Shengjun, YUAN Minghui, SHI Weibin. Super-resolution Reconstruction of Terahertz Images[J]. Infrared Technology , 2019, 41(1): 59-63. |
[5] | A Study on Rapid Image Super-resolution[J]. Infrared Technology , 2018, 40(3): 269-274. |
[6] | YUE Da-hao, LI Xiao-li, ZHANG Hao-jun, LI Ye-shu, FENG Li-chun, WU Nai-ming. IR Thermography Inspection of Wind Turbine Blades[J]. Infrared Technology , 2011, 33(10): 614-617. DOI: 10.3969/j.issn.1001-8891.2011.10.013 |
[7] | FAN Chao, SUN Ning-ning, XIA Xu. Super-resolution Reconstruction Based on Image Sequences[J]. Infrared Technology , 2010, 32(5): 279-282. DOI: 10.3969/j.issn.1001-8891.2010.05.007 |
[8] | ZHOU Jian-long, CHENG Xue-qun, HU Yang, LI Xiao-gang. Damage Inspection and Evaluation of Industrial Furnace Wall Lining with Infrared Thermal Imager[J]. Infrared Technology , 2008, 30(10): 595-598. DOI: 10.3969/j.issn.1001-8891.2008.10.010 |
[9] | XU Hong-cai, XIANG Jian-yong, PAN Hao. An Improved POCS Algorithm for Super-resolution Image Reconstruction[J]. Infrared Technology , 2005, 27(6): 477-480. DOI: 10.3969/j.issn.1001-8891.2005.06.010 |
[10] | Damage Inspection of Flue Lining with Infrared Thermovision[J]. Infrared Technology , 2002, 24(1): 60-62. DOI: 10.3969/j.issn.1001-8891.2002.01.016 |
1. |
关晓丹,郑东平,肖成. 基于全卷积网络的复杂背景红外弱小目标检测研究. 激光杂志. 2024(04): 254-258 .
![]() | |
2. |
余云霞,李毅鹏,陈姝敏. 基于锚框的远距离多尺度红外目标跟踪技术. 激光与红外. 2024(10): 1594-1599 .
![]() | |
3. |
孟祥瑞,李成良,文继权. 基于局部梯度的红外线列扫描图像小目标检测. 激光杂志. 2023(10): 52-56 .
![]() |