DING Xiwen, CHENG Hongchang, YUAN Yuan, ZHANG Ruoyu, YANG Shuning, YANG Ye, DANG Xiaogang. Research Status of Local Defect Detection Technology of Ultraviolet Image Intensifier Field of View[J]. Infrared Technology , 2024, 46(2): 129-137.
Citation: DING Xiwen, CHENG Hongchang, YUAN Yuan, ZHANG Ruoyu, YANG Shuning, YANG Ye, DANG Xiaogang. Research Status of Local Defect Detection Technology of Ultraviolet Image Intensifier Field of View[J]. Infrared Technology , 2024, 46(2): 129-137.

Research Status of Local Defect Detection Technology of Ultraviolet Image Intensifier Field of View

More Information
  • Received Date: May 11, 2023
  • Revised Date: July 17, 2023
  • Ultraviolet image intensifiers are imaging devices that are sensitive to ultraviolet radiation. Defects in the field of view are the main factors restricting the imaging effect of ultraviolet image intensifiers. Currently, the field-of-view defect detection technology is mainly divided into artificial and machine vision. This paper explains the definitions and detection standards for field defects. Subsequently, the difficulties in field defect detection are analyzed from the perspectives of defect-overlapping proximity, size, and quantity. Next, the research status of the field-of-view defect detection technology of ultraviolet image intensifiers is introduced. Combined with the current detection requirements and deficiencies, the defect detection effect of deep-learning technology in other fields was investigated. Finally, a theoretical feasibility analysis is presented, and the concept of field defect detection based on deep learning is proposed. The purpose is to provide a new solution for field defect detection of ultraviolet image intensifiers and promote their development in a practical and intelligent direction.
  • [1]
    石峰, 程宏昌, 闫磊, 等. 紫外探测技术[M]. 北京: 国防工业出版社, 2017.

    SHI Feng, CHENG Hongchang, YAN Lei, et al. Ultraviolet Detection Technology[M]. Beijing: National Defense Industry Press, 2017.
    [2]
    林祖伦, 王小菊. 光电成像导论[M]. 北京: 国防工业出版社, 2016.

    LIN Zulun, WANG Xiaoju. Introduction to Photoelectric Imaging[M]. Beijing: National Defense Industry Press, 2016.
    [3]
    汪贵华. 光电子器件[M]. 3版: 北京: 国防工业出版社, 2020.

    WANG Guihua. Optoelectronic Devices[M]. 3rd edition: Beijing: National Defense Industry Press, 2020.
    [4]
    许正光, 王霞, 王吉晖, 等. 像增强器视场缺陷检测方法研究[J]. 应用光学, 2005(3): 12-15. DOI: 10.3969/j.issn.1002-2082.2005.03.004

    XU Zhengguang, WANG Xia, WANG Jihui, et al. Research of an approach to detect field defects of image intensifier[J]. Application Optics, 2005(3): 12-15. DOI: 10.3969/j.issn.1002-2082.2005.03.004
    [5]
    王吉晖, 金伟其, 王霞, 等. 基于数学形态学的像增强器缺陷的图像检测方法[J]. 光学技术, 2005(3): 463-464, 467.

    WANG Jihui, JIN Weiqi, WANG Xia, et al. Flaw inspection method for image tube based on image processing[J]. Optical Technology, 2005(3): 463-464, 467.
    [6]
    赵清波. 宽光谱像增强器辐射增益和视场缺陷测试技术研究[D]. 南京: 南京理工大学, 2008.

    ZHAO Qingbo. Research on Radiation Gain and Field Defect Test Technology of Wide Spectrum Image Intensifier[D]. Nanjing: Nanjing University of Science and Technology, 2008.
    [7]
    FU Rongguo, WEI Yifang, YANG Qi, et al. The analysis of the defects of the view field of the UV image intensifier[C]//Sensors and Systems for Space Applications X of SPIE, 2017, 10196: 19-26.
    [8]
    杨琦. 紫外像增强器视场缺陷检测技术研究[D]. 南京: 南京理工大学, 2011.

    YANG Qi. Research on Defect Detection Technology of Ultraviolet Image Intensifier[D]. Nanjing: Nanjing University of Science and Technology, 2011.
    [9]
    ZHOU B, LIU B, WU D. Research on testing field flaws of image intensifier based on spatio-temporal SNR[C]//5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Detector, Imager, Display, and Energy Conversion Technology of SPIE, 2010, 7658: 691-695.
    [10]
    孙文政. 基于深度学习和机器视觉的手机屏幕瑕疵检测方法研究[D]. 济南: 山东大学, 2019.

    SUN Wenzheng. Research on Mobile Phone Screen Defect Detection Method Based on Deep Learning and Machine Vision[D]. Jinan: Shandong University, 2019.
    [11]
    汤勃, 孔建益, 伍世虔. 机器视觉表面缺陷检测综述[J]. 中国图象图形学报, 2017, 22(12): 1640-1663.

    TANG Bo, KONG Jianyi, WU Shiqian. Review of machine vision surface defect detection[J]. Chinese Journal of Image and Graphics, 2017, 22(12): 1640-1663.
    [12]
    张涛, 刘玉婷, 杨亚宁, 等. 基于机器视觉的表面缺陷检测研究综述[J]. 科学技术与工程, 2020, 20(35): 14366-14376. DOI: 10.3969/j.issn.1671-1815.2020.35.004

    ZHANG Tao, LIU Yuting, YANG Yaning, et al. Review of surface defect detection based on machine vision[J]. Science, Technology and Engineering, 2020, 20(35): 14366-14376. DOI: 10.3969/j.issn.1671-1815.2020.35.004
    [13]
    KE Wang, WANG Huiqin, YUE Shu, et al. Banknote image defect recognition method based on convolution neural network[J]. International Journal of Security and Its Applications, 2016, 10(6): 269-280. DOI: 10.14257/ijsia.2016.10.6.26
    [14]
    顾佳晨, 高雷, 刘路硌. 基于深度学习的目标检测算法在冷轧表面缺陷检测中的应用[J]. 冶金自动化, 2019, 43(6): 19-22.

    GU Jiachen, GAO Lei, LIU Luke. Application of object detection algorithm based on deep learning for inspection of surface defect of cold rolled strips[J]. Metallurgical Automation, 2019, 43(6): 19-22.
    [15]
    景军锋, 刘娆. 基于卷积神经网络的织物表面缺陷分类方法[J]. 测控技术, 2018, 37(9): 20-25.

    JING Junfeng, LIU Rao. Classification method of fabric surface defects based on convolution neural network[J]. Measurement and Control Technology, 2018, 37(9): 20-25.
    [16]
    Deitsch S, Christlein V, Berger S, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy, 2019, 185: 455-468. DOI: 10.1016/j.solener.2019.02.067
    [17]
    王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 859-867.

    WANG Sen, WU Xing, ZHANG Yinhui, et al. Image crack detection with fully convolutional network based on deep learning[J]. Journal of Computer Aided Design and Graphics, 2018, 30(5): 859-867.
    [18]
    DUNG C V. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction, 2019, 99: 52-58. DOI: 10.1016/j.autcon.2018.11.028
    [19]
    LIU Y, YANG Y, WANG C, et al. Research on surface defect detection based on semantic segmentation[C]//Advanced Science and Industry Research Center Proceedings of 2019 International Conference on Artificial Intelligence, Control and Automation Engineering(AICAE 2019), 2019: 416-420.
    [20]
    DONG Y, WANG J, WANG Z, et al. A deep-learning-based multiple defect detection method for tunnel lining damages[J]. IEEE Access, 2019, 7: 182643-182657. DOI: 10.1109/ACCESS.2019.2931074
    [21]
    TIAN H, LI F. Autoencoder-based fabric defect detection with cross-patch similarity[C]//16th International Conference on Machine Vision Applications (MVA) of IEEE, 2019: 1-6.
    [22]
    WEI Y H, NI Y Q. Variational autoencoder-based approach for rail defect identification[C]//12th International Workshop on Structural Health Monitoring: Enabling Intelligent Life-Cycle Health Management for Industry Internet of Things (IIOT), 2019: 2818-2824.
    [23]
    DI H, KE X, PENG Z, et al. Surface defect classification of steels with a new semi-supervised learning method[J]. Optics and Lasers in Engineering, 2019, 117: 40-48. DOI: 10.1016/j.optlaseng.2019.01.011
    [24]
    黄英来, 艾昕. 改进残差网络在玉米叶片病害图像的分类研究[J]. 计算机工程与应用, 2021, 57(23): 7.

    HUANG Yinglai, AI Xin. Research on classification of corn leaf disease image by improved residual network[J]. Computer Engineering and Application, 2021, 57(23): 7.
    [25]
    孙鹏翔, 毕利, 王俊杰. 基于改进深度残差网络的光伏板积灰程度识别[J]. 计算机应用, 2022, 42(12): 3733-3739.

    SUN Pengxiang, BI Li, WANG Junjie. Dust accumulation degree recognition of photovoltaic panel based on improved deep residual network[J]. Computer Application, 2022, 42(12): 3733-3739.
    [26]
    李馥颖, 杨大为, 黄海. 基于改进深度置信网络的木板表面缺陷检测模型[J]. 南京理工大学学报, 2022, 46(6): 728-734.

    LI Fuying, YANG Dawei, HUANG Hai. Improved deep belief network based detection model for wood surface defects[J]. Journal of Nanjing University of Science and Technology, 2022, 46(6): 728-734.
    [27]
    黄振宁, 赵永贵, 许志亮, 等. 基于判别式深度置信网络的智能电缆隧道缺陷检测技术研究[J]. 电子设计工程, 2022, 30(20): 103-107.

    HUANG Zhenning, ZHAO Yonggui, XU Zhiliang, et al. Fault detection technology for smart cable tunnel based on discriminant deep belief network[J]. Electronic Design Engineering, 2022, 30(20): 103-107.
    [28]
    李文俊, 陈斌, 李建明, 等. 基于深度神经网络的表面划痕识别方法[J]. 计算机应用, 2019, 39(7): 2103-2108.

    LI Wenjun, CHEN Bin, LI Jianming, et al. Surface scratch recognition method based on deep neural network[J]. Computer Application, 2019, 39(7): 2103-2108.
    [29]
    LEI J, GAO X, FENG Z, et al. Scale insensitive and focus driven mobile screen defect detection in industry[J]. Neurocomputing, 2018, 294: 72-81. DOI: 10.1016/j.neucom.2018.03.013
  • Related Articles

    [1]CHEN Xu, WU Wei, PENG Dongliang, GU Yu. Infrared-PV: an Infrared Target Detection Dataset for Surveillance Application[J]. Infrared Technology , 2023, 45(12): 1304-1313.
    [2]LEI Yongchang, LI Jianlin, DONG Wei, ZHOU Jiading, HOU Likun, QIAN Kunlun. Redundant Object Damage and Prevention Method for Infrared Detectors[J]. Infrared Technology , 2023, 45(7): 790-797.
    [3]ZHANG Lu, ZHANG Lei, FU Zhikai, TIAN Ya. Low Temperature Evaluation Method of Infrared Detector Integrated with Optical System[J]. Infrared Technology , 2021, 43(12): 1188-1192.
    [4]ZHANG Kunjie. Research Progress and Trends of High Operating Temperature Infrared Detectors[J]. Infrared Technology , 2021, 43(8): 766-772.
    [5]ZHU Shuangshuang, ZOU Peng, LU Meina, ZHANG Aiwen, LIU Zhenhai, QIU Zhenwei, HONG Jin. Temperature Control System Design of Infrared Detector Based on Bang-Bang and PID Control[J]. Infrared Technology , 2017, 39(11): 990-995.
    [6]High Performance InP/InGaAs Wide Spectrum Infrared Detectors[J]. Infrared Technology , 2016, 38(1): 1-5.
    [7]YONG Chao-Liang, DUAN Dong, XU Chun, CHEN Fan-Sheng. The Study on the Dark Current of the Infrared Detector Measuring Method[J]. Infrared Technology , 2012, 34(4): 196-199. DOI: 10.3969/j.issn.1001-8891.2012.04.003
    [8]Performance HgCdTe Infrared Detector at Different Temperatures[J]. Infrared Technology , 2012, 34(1): 1-3,15. DOI: 10.3969/j.issn.1001-8891.2012.01.001
    [9]ZHANG Tong, CHEN Xiao-wen, LIU Yin-nian, WANG Jian-yu. Design and Implement of Temperature Controlling System of Spaceborne Infrared Detector[J]. Infrared Technology , 2005, 27(2): 167-170. DOI: 10.3969/j.issn.1001-8891.2005.02.017
    [10]An Inquiry into the Performances of the Far Infrared Magnetic Fibers[J]. Infrared Technology , 2002, 24(6): 86-89. DOI: 10.3969/j.issn.1001-8891.2002.06.020
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (140) PDF downloads (39) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return