HE Bangsheng, WANG Zhonghua. Aerial Infrared Small Target Detection Algorithm Based on Structure Tensor Screening and Local Contrast Analysis[J]. Infrared Technology , 2023, 45(11): 1169-1176.
Citation: HE Bangsheng, WANG Zhonghua. Aerial Infrared Small Target Detection Algorithm Based on Structure Tensor Screening and Local Contrast Analysis[J]. Infrared Technology , 2023, 45(11): 1169-1176.

Aerial Infrared Small Target Detection Algorithm Based on Structure Tensor Screening and Local Contrast Analysis

More Information
  • Received Date: November 15, 2022
  • Revised Date: January 30, 2023
  • Considering the false alarm and real-time requirements of infrared small-target detection under a complex cloud background, a novel algorithm is proposed based on structure tensor screening and local contrast analysis. Combined with the feature that the maximum eigenvalue of the structure tensor of the target area is larger than that of other background areas, the proposed algorithm can filter out most nontarget areas and retain a few suspicious areas. Local contrast calculation performed on suspicious areas can enhance the target, suppress the residual background, and effectively reduce computation. The algorithm steps are as follows: first, we constructed the structure tensor matrix within the local image area captured by the sliding window, and where the maximum eigenvalue is larger than the threshold is marked as a suspicious area. Then, we calculated the ratio-difference joint local contrast. Finally, we adopted an adaptive threshold segmentation on the saliency map to extract the real target. Experimental results showed that the proposed algorithm can achieve a higher detection rate, lower false alarm rate, and shorter running time under a complex cloud background.
  • [1]
    姚朝霞, 谢涛. 基于局部对比度测量的红外弱小目标恒虚警检测[J]. 红外技术, 2017, 39(10): 940-945. http://hwjs.nvir.cn/article/id/hwjs201710012

    YAO Zhaoxia, XIE Tao. Robust small dim object CFA detection algorithm based on local contrast measure in aerial complex background[J]. Infrared Technology, 2017, 39(10): 940-945. http://hwjs.nvir.cn/article/id/hwjs201710012
    [2]
    赵高鹏, 李磊, 王建宇. 基于结构张量分析的弱小目标单帧检测[J]. 光子学报, 2019, 48(1): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201901019.htm

    ZHAO Gaopeng, LI Lei, WANG Jianyu. Dim small target single-frame detection based on structure tensor analysis[J]. Acta Photonica Sinica, 2019, 48(1): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201901019.htm
    [3]
    沈旭, 程小辉, 王新政. 结合视觉注意力机制基于尺度自适应局部对比度增强的红外弱小目标检测算法[J]. 红外技术, 2019, 41(8): 764-771. http://hwjs.nvir.cn/article/id/hwjs201908012

    SHEN Xu, CHENG Xiaohui, WANG Xinzheng. Infrared dim-small object detection algorithm based on adaptive scale local contrast enhancement combined with visual attention mechanism[J]. Infrared Technology, 2019, 41(8): 764-771. http://hwjs.nvir.cn/article/id/hwjs201908012
    [4]
    危水根, 王程伟, 张聪炫, 等. 多信息融合的红外弱小目标检测[J]. 红外技术, 2019, 41(9): 857-865. http://hwjs.nvir.cn/article/id/hwjs201909010

    WEI Shuigen, WANG Chengwei, ZHANG Congxuan, et al. Infrared dim target detection based on multi-information fusion[J]. Infrared Technology, 2019, 41(9): 857-865. http://hwjs.nvir.cn/article/id/hwjs201909010
    [5]
    潘胜达, 张素, 赵明, 等. 基于双层局部对比度的红外弱小目标检测方法[J]. 光子学报, 2020, 49(1): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202001021.htm

    PAN Shengda, ZHANG Su, ZHAO Ming, et al. Infrared small target detection based on double-layer local contrast measure[J]. Acta Photonica Sinica, 2020, 49(1): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202001021.htm
    [6]
    KOU Tian, LI Zhangwu, WANG Haiyan, et al. Infrared point target detection based on multiscale homogeneous feature fusion[J]. Infrared Physics & Technology, 2019, 102: 103040.
    [7]
    韩金辉, 董兴浩, 蒋亚伟, 等. 基于局部对比度机制的红外弱小目标检测算法[J]. 红外技术, 2021, 43(4): 357-366. http://hwjs.nvir.cn/article/id/29b77b73-8c1e-4251-9ae4-c9f39e265270

    HAN Jinhui, DONG Xinghao, JIANG Yawei, et al. Infrared small dim target detection based on local contrast mechanism[J]. Infrared Technology, 2021, 43(4): 357-366. http://hwjs.nvir.cn/article/id/29b77b73-8c1e-4251-9ae4-c9f39e265270
    [8]
    张华良, 谢永杰, 张颂, 等. 基于自适应频域滤波的红外弱小目标检测技术[J]. 应用光学, 2015, 36(4): 630-634. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201504024.htm

    ZHANG Hualiang, XIE Yongjie, ZHANG Song, et al. Detection of small, low contrast targets based on adaptive frequency filter[J]. Journal of Applied Optics, 2015, 36(4): 630-634. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201504024.htm
    [9]
    ZHOU Fugen, BAI Xiangzhi. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 2010, 43(6): 2145-2156.
    [10]
    Deshpande S D, Er M H, Venkateswarlu R, et al. Max-mean and max-median filters for detection of small targets[C]//SPIE Conference on Signal and Data Processing of Small Targets, 1999, 3809: 74-83.
    [11]
    CHEN C L P, LI Hong, WEI Yantao, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581.
    [12]
    刘德鹏, 李正周, 曾靖杰, 等. 基于多尺度局部对比度和多尺度梯度一致性的红外小弱目标检测算法[J]. 兵工学报, 2018, 39(8): 1526-1535. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201808009.htm

    LIU Depeng, LI Zhengzhou, ZENG Jingjie, et al. Infrared dim small target detection based on multi-scale local contrast and multi-scale gradient coherence[J]. Acta Armamentarii, 2018, 39(8): 1526-1535. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201808009.htm
    [13]
    WEI Yantao, YOU Xinge, LI Hong. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216-226.
    [14]
    CUI Zheng, YANG Jingli, JIANG Shouda, et al. An infrared-small-target detection method in compressed sensing domain based on local segment contrast measure[J]. Infrared Physics & Technology, 2018, 93: 41-52.
    [15]
    张祥越, 丁庆海, 罗海波, 等. 基于改进LCM的红外小目标检测算法[J]. 红外与激光工程, 2017, 46(7): 270-276. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201707040.htm

    ZHANG Xiangyue, DING Qinghai, LUO Haibo, et al. Infrared dim target detection algorithm based on improved LCM[J]. Infrared and Laser Engineering, 2017, 46(7): 270-276. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201707040.htm
    [16]
    韩金辉, 蒋亚伟, 张小件, 等. 采用三层窗口局部对比度的红外小目标检测[J]. 红外与激光工程, 2021, 50(2): 244-253. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202102028.htm

    HAN Jinhui, JIANG Yawei, ZHANG Xiaojian, et al. Infrared small target detection using tri-layer window local contrast[J]. Infrared and Laser Engineering, 2021, 50(2): 244-253. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202102028.htm
    [17]
    DU Peng, Askar Hamdulla. Infrared small target detection using homogeneity-weighted local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(3): 514-518.
    [18]
    CUI Huixin, LI Liyuan, LIU Xin, et al. Infrared small target detection based on weighted three-layer window local contrast[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7505705.
    [19]
    LYU Pingyue, SUN Shengli, LIN Changqing, et al. A method for weak target detection based on human visual contrast mechanism[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 261-265.
  • Related Articles

    [1]ZHOU Huikui, ZHANG Li, HU Sujuan. Underwater Image Enhancement Based on Improved Histogram Matching and Adaptive Equalization[J]. Infrared Technology , 2024, 46(5): 532-538.
    [2]MA Qun, ZHAO Meirong, ZHENG Yelong, SUN Lin, NI Feng. Infrared Image Detail Enhancement Based on Adaptive Conditional Histogram Equalization[J]. Infrared Technology , 2024, 46(1): 52-60.
    [3]LIU He, ZHAO Tiancheng, LI Jiashuai, YANG Daiyong, YUAN Xiaocui, XU Zhihao. Contrast Enhancement Method of SF6 Infrared Image Based on Tri-histogram Equalization Algorithm[J]. Infrared Technology , 2023, 45(10): 1118-1125.
    [4]HE Zhibo, ZENG Xiangjin, DENG Chen, SONG Pengpeng. Infrared Image Enhancement Based on Local Entropy-Local Contrast and Dual-area Histogram Equalization[J]. Infrared Technology , 2023, 45(6): 598-604.
    [5]HU Xuekai, LUO Peng, LI Tiecheng, CAI Yuru, MA Na, ZHOU Xueqing. Multi-scale Image Fusion Based on Adaptive Weighting[J]. Infrared Technology , 2022, 44(4): 404-409.
    [6]CHEN Zhiheng, YAN Limin, ZHANG Jingyang. Nighttime Dehazing Algorithm with Adaptive Global Brightness Compensation[J]. Infrared Technology , 2021, 43(10): 954-959.
    [7]ZHEN Mei, WANG Shupeng. An Adaptive Weighted Average Fusion Method for Visible and Infrared Images[J]. Infrared Technology , 2019, 41(4): 341-346.
    [8]A New Multi-direction Adaptive Weighted Pseudo Median Filtering Algorithm Based on Wavelet Domain[J]. Infrared Technology , 2014, (9): 737-742.
    [9]JIANG Xiao Hui, ZHAO Xun-jie, LI Cheng-jin, ZHANG Xue-song. A Super-Resolution Algorithm Based on Adaptive Weighted Total Variation[J]. Infrared Technology , 2014, (4): 290-293.
    [10]A FCM Segmentation Method of Measurement of Image Based on Adaptive Coefficient of Fuzzy Weight[J]. Infrared Technology , 2013, (3): 146-149.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return